summaryrefslogtreecommitdiff
path: root/source/kit/miniz/miniz_tinfl.c
blob: c8843ad92b869517702344f2583db968b3a20560 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
/**************************************************************************
 *
 * Copyright 2013-2014 RAD Game Tools and Valve Software
 * Copyright 2010-2014 Rich Geldreich and Tenacious Software LLC
 * All Rights Reserved.
 *
 * Permission is hereby granted, free of charge, to any person
 *obtaining a copy of this software and associated documentation files
 *(the "Software"), to deal in the Software without restriction,
 *including without limitation the rights to use, copy, modify, merge,
 *publish, distribute, sublicense, and/or sell copies of the Software,
 *and to permit persons to whom the Software is furnished to do so,
 *subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be
 *included in all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 *EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 *MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 *NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 *BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 *ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 *CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 *SOFTWARE.
 *
 **************************************************************************/

#include "miniz.h"

#ifndef MINIZ_NO_INFLATE_APIS

#  ifdef __cplusplus
extern "C" {
#  endif

/* ------------------- Low-level Decompression (completely independent
 * from all compression API's) */

#  define TINFL_MEMCPY(d, s, l) memcpy(d, s, l)
#  define TINFL_MEMSET(p, c, l) memset(p, c, l)

#  define TINFL_CR_BEGIN  \
    switch (r->m_state) { \
      case 0:
#  define TINFL_CR_RETURN(state_index, result) \
    do {                                       \
      status     = result;                     \
      r->m_state = state_index;                \
      goto common_exit;                        \
      case state_index:;                       \
    }                                          \
    MZ_MACRO_END
#  define TINFL_CR_RETURN_FOREVER(state_index, result)   \
    do {                                                 \
      for (;;) { TINFL_CR_RETURN(state_index, result); } \
    }                                                    \
    MZ_MACRO_END
#  define TINFL_CR_FINISH }

#  define TINFL_GET_BYTE(state_index, c)                     \
    do {                                                     \
      while (pIn_buf_cur >= pIn_buf_end) {                   \
        TINFL_CR_RETURN(                                     \
            state_index,                                     \
            (decomp_flags & TINFL_FLAG_HAS_MORE_INPUT)       \
                ? TINFL_STATUS_NEEDS_MORE_INPUT              \
                : TINFL_STATUS_FAILED_CANNOT_MAKE_PROGRESS); \
      }                                                      \
      c = *pIn_buf_cur++;                                    \
    }                                                        \
    MZ_MACRO_END

#  define TINFL_NEED_BITS(state_index, n)             \
    do {                                              \
      mz_uint c;                                      \
      TINFL_GET_BYTE(state_index, c);                 \
      bit_buf |= (((tinfl_bit_buf_t) c) << num_bits); \
      num_bits += 8;                                  \
    } while (num_bits < (mz_uint) (n))
#  define TINFL_SKIP_BITS(state_index, n) \
    do {                                  \
      if (num_bits < (mz_uint) (n)) {     \
        TINFL_NEED_BITS(state_index, n);  \
      }                                   \
      bit_buf >>= (n);                    \
      num_bits -= (n);                    \
    }                                     \
    MZ_MACRO_END
#  define TINFL_GET_BITS(state_index, b, n) \
    do {                                    \
      if (num_bits < (mz_uint) (n)) {       \
        TINFL_NEED_BITS(state_index, n);    \
      }                                     \
      b = bit_buf & ((1 << (n)) - 1);       \
      bit_buf >>= (n);                      \
      num_bits -= (n);                      \
    }                                       \
    MZ_MACRO_END

/* TINFL_HUFF_BITBUF_FILL() is only used rarely, when the number of
 * bytes remaining in the input buffer falls below 2. */
/* It reads just enough bytes from the input stream that are needed to
 * decode the next Huffman code (and absolutely no more). It works by
 * trying to fully decode a */
/* Huffman code by using whatever bits are currently present in the
 * bit buffer. If this fails, it reads another byte, and tries again
 * until it succeeds or until the */
/* bit buffer contains >=15 bits (deflate's max. Huffman code size).
 */
#  define TINFL_HUFF_BITBUF_FILL(state_index, pLookUp, pTree)  \
    do {                                                       \
      temp = pLookUp[bit_buf & (TINFL_FAST_LOOKUP_SIZE - 1)];  \
      if (temp >= 0) {                                         \
        code_len = temp >> 9;                                  \
        if ((code_len) && (num_bits >= code_len))              \
          break;                                               \
      } else if (num_bits > TINFL_FAST_LOOKUP_BITS) {          \
        code_len = TINFL_FAST_LOOKUP_BITS;                     \
        do {                                                   \
          temp = pTree[~temp + ((bit_buf >> code_len++) & 1)]; \
        } while ((temp < 0) && (num_bits >= (code_len + 1)));  \
        if (temp >= 0)                                         \
          break;                                               \
      }                                                        \
      TINFL_GET_BYTE(state_index, c);                          \
      bit_buf |= (((tinfl_bit_buf_t) c) << num_bits);          \
      num_bits += 8;                                           \
    } while (num_bits < 15);

/* TINFL_HUFF_DECODE() decodes the next Huffman coded symbol. It's
 * more complex than you would initially expect because the zlib API
 * expects the decompressor to never read */
/* beyond the final byte of the deflate stream. (In other words, when
 * this macro wants to read another byte from the input, it REALLY
 * needs another byte in order to fully */
/* decode the next Huffman code.) Handling this properly is
 * particularly important on raw deflate (non-zlib) streams, which
 * aren't followed by a byte aligned adler-32. */
/* The slow path is only executed at the very end of the input buffer.
 */
/* v1.16: The original macro handled the case at the very end of the
 * passed-in input buffer, but we also need to handle the case where
 * the user passes in 1+zillion bytes */
/* following the deflate data and our non-conservative read-ahead path
 * won't kick in here on this code. This is much trickier. */
#  define TINFL_HUFF_DECODE(state_index, sym, pLookUp, pTree)      \
    do {                                                           \
      int     temp;                                                \
      mz_uint code_len, c;                                         \
      if (num_bits < 15) {                                         \
        if ((pIn_buf_end - pIn_buf_cur) < 2) {                     \
          TINFL_HUFF_BITBUF_FILL(state_index, pLookUp, pTree);     \
        } else {                                                   \
          bit_buf |= (((tinfl_bit_buf_t) pIn_buf_cur[0])           \
                      << num_bits) |                               \
                     (((tinfl_bit_buf_t) pIn_buf_cur[1])           \
                      << (num_bits + 8));                          \
          pIn_buf_cur += 2;                                        \
          num_bits += 16;                                          \
        }                                                          \
      }                                                            \
      if ((temp =                                                  \
               pLookUp[bit_buf & (TINFL_FAST_LOOKUP_SIZE - 1)]) >= \
          0)                                                       \
        code_len = temp >> 9, temp &= 511;                         \
      else {                                                       \
        code_len = TINFL_FAST_LOOKUP_BITS;                         \
        do {                                                       \
          temp = pTree[~temp + ((bit_buf >> code_len++) & 1)];     \
        } while (temp < 0);                                        \
      }                                                            \
      sym = temp;                                                  \
      bit_buf >>= code_len;                                        \
      num_bits -= code_len;                                        \
    }                                                              \
    MZ_MACRO_END

static void tinfl_clear_tree(tinfl_decompressor *r) {
  if (r->m_type == 0)
    MZ_CLEAR_ARR(r->m_tree_0);
  else if (r->m_type == 1)
    MZ_CLEAR_ARR(r->m_tree_1);
  else
    MZ_CLEAR_ARR(r->m_tree_2);
}

tinfl_status tinfl_decompress(tinfl_decompressor *r,
                              const mz_uint8     *pIn_buf_next,
                              size_t             *pIn_buf_size,
                              mz_uint8           *pOut_buf_start,
                              mz_uint8           *pOut_buf_next,
                              size_t             *pOut_buf_size,
                              const mz_uint32     decomp_flags) {
  static const mz_uint16 s_length_base[31] = {
    3,  4,   5,   6,   7,   8,   9,   10, 11, 13, 15,
    17, 19,  23,  27,  31,  35,  43,  51, 59, 67, 83,
    99, 115, 131, 163, 195, 227, 258, 0,  0
  };
  static const mz_uint8 s_length_extra[31] = { 0, 0, 0, 0, 0, 0, 0, 0,
                                               1, 1, 1, 1, 2, 2, 2, 2,
                                               3, 3, 3, 3, 4, 4, 4, 4,
                                               5, 5, 5, 5, 0, 0, 0 };
  static const mz_uint16 s_dist_base[32]   = {
    1,    2,    3,    4,     5,     7,     9,    13,
    17,   25,   33,   49,    65,    97,    129,  193,
    257,  385,  513,  769,   1025,  1537,  2049, 3073,
    4097, 6145, 8193, 12289, 16385, 24577, 0,    0
  };
  static const mz_uint8 s_dist_extra[32] = {
    0, 0, 0, 0, 1, 1, 2, 2,  3,  3,  4,  4,  5,  5,  6,
    6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13
  };
  static const mz_uint8 s_length_dezigzag[19] = {
    16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15
  };
  static const mz_uint16 s_min_table_sizes[3] = { 257, 1, 4 };

  mz_int16 *pTrees[3];
  mz_uint8 *pCode_sizes[3];

  tinfl_status    status = TINFL_STATUS_FAILED;
  mz_uint32       num_bits, dist, counter, num_extra;
  tinfl_bit_buf_t bit_buf;
  const mz_uint8 *pIn_buf_cur = pIn_buf_next, *const pIn_buf_end =
                                                  pIn_buf_next +
                                                  *pIn_buf_size;
  mz_uint8 *pOut_buf_cur = pOut_buf_next, *const pOut_buf_end =
                                              pOut_buf_next
                                                  ? pOut_buf_next +
                                                        *pOut_buf_size
                                                  : NULL;
  size_t out_buf_size_mask =
             (decomp_flags & TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF)
                 ? (size_t) -1
                 : ((pOut_buf_next - pOut_buf_start) +
                    *pOut_buf_size) -
                       1,
         dist_from_out_buf_start;

  /* Ensure the output buffer's size is a power of 2, unless the
   * output buffer is large enough to hold the entire output file (in
   * which case it doesn't matter). */
  if (((out_buf_size_mask + 1) & out_buf_size_mask) ||
      (pOut_buf_next < pOut_buf_start)) {
    *pIn_buf_size = *pOut_buf_size = 0;
    return TINFL_STATUS_BAD_PARAM;
  }

  pTrees[0]      = r->m_tree_0;
  pTrees[1]      = r->m_tree_1;
  pTrees[2]      = r->m_tree_2;
  pCode_sizes[0] = r->m_code_size_0;
  pCode_sizes[1] = r->m_code_size_1;
  pCode_sizes[2] = r->m_code_size_2;

  num_bits                = r->m_num_bits;
  bit_buf                 = r->m_bit_buf;
  dist                    = r->m_dist;
  counter                 = r->m_counter;
  num_extra               = r->m_num_extra;
  dist_from_out_buf_start = r->m_dist_from_out_buf_start;
  TINFL_CR_BEGIN

  bit_buf = num_bits = dist = counter = num_extra = r->m_zhdr0 =
      r->m_zhdr1                                  = 0;
  r->m_z_adler32 = r->m_check_adler32 = 1;
  if (decomp_flags & TINFL_FLAG_PARSE_ZLIB_HEADER) {
    TINFL_GET_BYTE(1, r->m_zhdr0);
    TINFL_GET_BYTE(2, r->m_zhdr1);
    counter = (((r->m_zhdr0 * 256 + r->m_zhdr1) % 31 != 0) ||
               (r->m_zhdr1 & 32) || ((r->m_zhdr0 & 15) != 8));
    if (!(decomp_flags & TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF))
      counter |= (((1U << (8U + (r->m_zhdr0 >> 4))) > 32768U) ||
                  ((out_buf_size_mask + 1) <
                   (size_t) ((size_t) 1
                             << (8U + (r->m_zhdr0 >> 4)))));
    if (counter) {
      TINFL_CR_RETURN_FOREVER(36, TINFL_STATUS_FAILED);
    }
  }

  do {
    TINFL_GET_BITS(3, r->m_final, 3);
    r->m_type = r->m_final >> 1;
    if (r->m_type == 0) {
      TINFL_SKIP_BITS(5, num_bits & 7);
      for (counter = 0; counter < 4; ++counter) {
        if (num_bits)
          TINFL_GET_BITS(6, r->m_raw_header[counter], 8);
        else
          TINFL_GET_BYTE(7, r->m_raw_header[counter]);
      }
      if ((counter = (r->m_raw_header[0] |
                      (r->m_raw_header[1] << 8))) !=
          (mz_uint) (0xFFFF ^ (r->m_raw_header[2] |
                               (r->m_raw_header[3] << 8)))) {
        TINFL_CR_RETURN_FOREVER(39, TINFL_STATUS_FAILED);
      }
      while ((counter) && (num_bits)) {
        TINFL_GET_BITS(51, dist, 8);
        while (pOut_buf_cur >= pOut_buf_end) {
          TINFL_CR_RETURN(52, TINFL_STATUS_HAS_MORE_OUTPUT);
        }
        *pOut_buf_cur++ = (mz_uint8) dist;
        counter--;
      }
      while (counter) {
        size_t n;
        while (pOut_buf_cur >= pOut_buf_end) {
          TINFL_CR_RETURN(9, TINFL_STATUS_HAS_MORE_OUTPUT);
        }
        while (pIn_buf_cur >= pIn_buf_end) {
          TINFL_CR_RETURN(
              38, (decomp_flags & TINFL_FLAG_HAS_MORE_INPUT)
                      ? TINFL_STATUS_NEEDS_MORE_INPUT
                      : TINFL_STATUS_FAILED_CANNOT_MAKE_PROGRESS);
        }
        n = MZ_MIN(MZ_MIN((size_t) (pOut_buf_end - pOut_buf_cur),
                          (size_t) (pIn_buf_end - pIn_buf_cur)),
                   counter);
        TINFL_MEMCPY(pOut_buf_cur, pIn_buf_cur, n);
        pIn_buf_cur += n;
        pOut_buf_cur += n;
        counter -= (mz_uint) n;
      }
    } else if (r->m_type == 3) {
      TINFL_CR_RETURN_FOREVER(10, TINFL_STATUS_FAILED);
    } else {
      if (r->m_type == 1) {
        mz_uint8 *p = r->m_code_size_0;
        mz_uint   i;
        r->m_table_sizes[0] = 288;
        r->m_table_sizes[1] = 32;
        TINFL_MEMSET(r->m_code_size_1, 5, 32);
        for (i = 0; i <= 143; ++i) *p++ = 8;
        for (; i <= 255; ++i) *p++ = 9;
        for (; i <= 279; ++i) *p++ = 7;
        for (; i <= 287; ++i) *p++ = 8;
      } else {
        for (counter = 0; counter < 3; counter++) {
          TINFL_GET_BITS(11, r->m_table_sizes[counter],
                         "\05\05\04"[counter]);
          r->m_table_sizes[counter] += s_min_table_sizes[counter];
        }
        MZ_CLEAR_ARR(r->m_code_size_2);
        for (counter = 0; counter < r->m_table_sizes[2]; counter++) {
          mz_uint s;
          TINFL_GET_BITS(14, s, 3);
          r->m_code_size_2[s_length_dezigzag[counter]] = (mz_uint8) s;
        }
        r->m_table_sizes[2] = 19;
      }
      for (; (int) r->m_type >= 0; r->m_type--) {
        int       tree_next, tree_cur;
        mz_int16 *pLookUp;
        mz_int16 *pTree;
        mz_uint8 *pCode_size;
        mz_uint   i, j, used_syms, total, sym_index, next_code[17],
            total_syms[16];
        pLookUp    = r->m_look_up[r->m_type];
        pTree      = pTrees[r->m_type];
        pCode_size = pCode_sizes[r->m_type];
        MZ_CLEAR_ARR(total_syms);
        TINFL_MEMSET(pLookUp, 0, sizeof(r->m_look_up[0]));
        tinfl_clear_tree(r);
        for (i = 0; i < r->m_table_sizes[r->m_type]; ++i)
          total_syms[pCode_size[i]]++;
        used_syms = 0, total = 0;
        next_code[0] = next_code[1] = 0;
        for (i = 1; i <= 15; ++i) {
          used_syms += total_syms[i];
          next_code[i + 1] = (total = ((total + total_syms[i]) << 1));
        }
        if ((65536 != total) && (used_syms > 1)) {
          TINFL_CR_RETURN_FOREVER(35, TINFL_STATUS_FAILED);
        }
        for (tree_next = -1, sym_index = 0;
             sym_index < r->m_table_sizes[r->m_type]; ++sym_index) {
          mz_uint rev_code  = 0, l, cur_code,
                  code_size = pCode_size[sym_index];
          if (!code_size)
            continue;
          cur_code = next_code[code_size]++;
          for (l = code_size; l > 0; l--, cur_code >>= 1)
            rev_code = (rev_code << 1) | (cur_code & 1);
          if (code_size <= TINFL_FAST_LOOKUP_BITS) {
            mz_int16 k = (mz_int16) ((code_size << 9) | sym_index);
            while (rev_code < TINFL_FAST_LOOKUP_SIZE) {
              pLookUp[rev_code] = k;
              rev_code += (1 << code_size);
            }
            continue;
          }
          if (0 ==
              (tree_cur = pLookUp[rev_code &
                                  (TINFL_FAST_LOOKUP_SIZE - 1)])) {
            pLookUp[rev_code & (TINFL_FAST_LOOKUP_SIZE - 1)] =
                (mz_int16) tree_next;
            tree_cur = tree_next;
            tree_next -= 2;
          }
          rev_code >>= (TINFL_FAST_LOOKUP_BITS - 1);
          for (j = code_size; j > (TINFL_FAST_LOOKUP_BITS + 1); j--) {
            tree_cur -= ((rev_code >>= 1) & 1);
            if (!pTree[-tree_cur - 1]) {
              pTree[-tree_cur - 1] = (mz_int16) tree_next;
              tree_cur             = tree_next;
              tree_next -= 2;
            } else
              tree_cur = pTree[-tree_cur - 1];
          }
          tree_cur -= ((rev_code >>= 1) & 1);
          pTree[-tree_cur - 1] = (mz_int16) sym_index;
        }
        if (r->m_type == 2) {
          for (counter = 0; counter < (r->m_table_sizes[0] +
                                       r->m_table_sizes[1]);) {
            mz_uint s;
            TINFL_HUFF_DECODE(16, dist, r->m_look_up[2], r->m_tree_2);
            if (dist < 16) {
              r->m_len_codes[counter++] = (mz_uint8) dist;
              continue;
            }
            if ((dist == 16) && (!counter)) {
              TINFL_CR_RETURN_FOREVER(17, TINFL_STATUS_FAILED);
            }
            num_extra = "\02\03\07"[dist - 16];
            TINFL_GET_BITS(18, s, num_extra);
            s += "\03\03\013"[dist - 16];
            TINFL_MEMSET(
                r->m_len_codes + counter,
                (dist == 16) ? r->m_len_codes[counter - 1] : 0, s);
            counter += s;
          }
          if ((r->m_table_sizes[0] + r->m_table_sizes[1]) !=
              counter) {
            TINFL_CR_RETURN_FOREVER(21, TINFL_STATUS_FAILED);
          }
          TINFL_MEMCPY(r->m_code_size_0, r->m_len_codes,
                       r->m_table_sizes[0]);
          TINFL_MEMCPY(r->m_code_size_1,
                       r->m_len_codes + r->m_table_sizes[0],
                       r->m_table_sizes[1]);
        }
      }
      for (;;) {
        mz_uint8 *pSrc;
        for (;;) {
          if (((pIn_buf_end - pIn_buf_cur) < 4) ||
              ((pOut_buf_end - pOut_buf_cur) < 2)) {
            TINFL_HUFF_DECODE(23, counter, r->m_look_up[0],
                              r->m_tree_0);
            if (counter >= 256)
              break;
            while (pOut_buf_cur >= pOut_buf_end) {
              TINFL_CR_RETURN(24, TINFL_STATUS_HAS_MORE_OUTPUT);
            }
            *pOut_buf_cur++ = (mz_uint8) counter;
          } else {
            int     sym2;
            mz_uint code_len;
#  if TINFL_USE_64BIT_BITBUF
            if (num_bits < 30) {
              bit_buf |=
                  (((tinfl_bit_buf_t) MZ_READ_LE32(pIn_buf_cur))
                   << num_bits);
              pIn_buf_cur += 4;
              num_bits += 32;
            }
#  else
            if (num_bits < 15) {
              bit_buf |=
                  (((tinfl_bit_buf_t) MZ_READ_LE16(pIn_buf_cur))
                   << num_bits);
              pIn_buf_cur += 2;
              num_bits += 16;
            }
#  endif
            if ((sym2 =
                     r->m_look_up[0][bit_buf &
                                     (TINFL_FAST_LOOKUP_SIZE - 1)]) >=
                0)
              code_len = sym2 >> 9;
            else {
              code_len = TINFL_FAST_LOOKUP_BITS;
              do {
                sym2 = r->m_tree_0[~sym2 +
                                   ((bit_buf >> code_len++) & 1)];
              } while (sym2 < 0);
            }
            counter = sym2;
            bit_buf >>= code_len;
            num_bits -= code_len;
            if (counter & 256)
              break;

#  if !TINFL_USE_64BIT_BITBUF
            if (num_bits < 15) {
              bit_buf |=
                  (((tinfl_bit_buf_t) MZ_READ_LE16(pIn_buf_cur))
                   << num_bits);
              pIn_buf_cur += 2;
              num_bits += 16;
            }
#  endif
            if ((sym2 =
                     r->m_look_up[0][bit_buf &
                                     (TINFL_FAST_LOOKUP_SIZE - 1)]) >=
                0)
              code_len = sym2 >> 9;
            else {
              code_len = TINFL_FAST_LOOKUP_BITS;
              do {
                sym2 = r->m_tree_0[~sym2 +
                                   ((bit_buf >> code_len++) & 1)];
              } while (sym2 < 0);
            }
            bit_buf >>= code_len;
            num_bits -= code_len;

            pOut_buf_cur[0] = (mz_uint8) counter;
            if (sym2 & 256) {
              pOut_buf_cur++;
              counter = sym2;
              break;
            }
            pOut_buf_cur[1] = (mz_uint8) sym2;
            pOut_buf_cur += 2;
          }
        }
        if ((counter &= 511) == 256)
          break;

        num_extra = s_length_extra[counter - 257];
        counter   = s_length_base[counter - 257];
        if (num_extra) {
          mz_uint extra_bits;
          TINFL_GET_BITS(25, extra_bits, num_extra);
          counter += extra_bits;
        }

        TINFL_HUFF_DECODE(26, dist, r->m_look_up[1], r->m_tree_1);
        num_extra = s_dist_extra[dist];
        dist      = s_dist_base[dist];
        if (num_extra) {
          mz_uint extra_bits;
          TINFL_GET_BITS(27, extra_bits, num_extra);
          dist += extra_bits;
        }

        dist_from_out_buf_start = pOut_buf_cur - pOut_buf_start;
        if ((dist == 0 || dist > dist_from_out_buf_start ||
             dist_from_out_buf_start == 0) &&
            (decomp_flags &
             TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF)) {
          TINFL_CR_RETURN_FOREVER(37, TINFL_STATUS_FAILED);
        }

        pSrc = pOut_buf_start +
               ((dist_from_out_buf_start - dist) & out_buf_size_mask);

        if ((MZ_MAX(pOut_buf_cur, pSrc) + counter) > pOut_buf_end) {
          while (counter--) {
            while (pOut_buf_cur >= pOut_buf_end) {
              TINFL_CR_RETURN(53, TINFL_STATUS_HAS_MORE_OUTPUT);
            }
            *pOut_buf_cur++ =
                pOut_buf_start[(dist_from_out_buf_start++ - dist) &
                               out_buf_size_mask];
          }
          continue;
        }
#  if MINIZ_USE_UNALIGNED_LOADS_AND_STORES
        else if ((counter >= 9) && (counter <= dist)) {
          const mz_uint8 *pSrc_end = pSrc + (counter & ~7);
          do {
#    ifdef MINIZ_UNALIGNED_USE_MEMCPY
            memcpy(pOut_buf_cur, pSrc, sizeof(mz_uint32) * 2);
#    else
            ((mz_uint32 *) pOut_buf_cur)[0] = ((
                const mz_uint32 *) pSrc)[0];
            ((mz_uint32 *) pOut_buf_cur)[1] = ((
                const mz_uint32 *) pSrc)[1];
#    endif
            pOut_buf_cur += 8;
          } while ((pSrc += 8) < pSrc_end);
          if ((counter &= 7) < 3) {
            if (counter) {
              pOut_buf_cur[0] = pSrc[0];
              if (counter > 1)
                pOut_buf_cur[1] = pSrc[1];
              pOut_buf_cur += counter;
            }
            continue;
          }
        }
#  endif
        while (counter > 2) {
          pOut_buf_cur[0] = pSrc[0];
          pOut_buf_cur[1] = pSrc[1];
          pOut_buf_cur[2] = pSrc[2];
          pOut_buf_cur += 3;
          pSrc += 3;
          counter -= 3;
        }
        if (counter > 0) {
          pOut_buf_cur[0] = pSrc[0];
          if (counter > 1)
            pOut_buf_cur[1] = pSrc[1];
          pOut_buf_cur += counter;
        }
      }
    }
  } while (!(r->m_final & 1));

  /* Ensure byte alignment and put back any bytes from the bitbuf if
   * we've looked ahead too far on gzip, or other Deflate streams
   * followed by arbitrary data. */
  /* I'm being super conservative here. A number of simplifications
   * can be made to the byte alignment part, and the Adler32 check
   * shouldn't ever need to worry about reading from the bitbuf now.
   */
  TINFL_SKIP_BITS(32, num_bits & 7);
  while ((pIn_buf_cur > pIn_buf_next) && (num_bits >= 8)) {
    --pIn_buf_cur;
    num_bits -= 8;
  }
  bit_buf &= ~(~(tinfl_bit_buf_t) 0 << num_bits);
  MZ_ASSERT(!num_bits); /* if this assert fires then we've read beyond
                           the end of non-deflate/zlib streams with
                           following data (such as gzip streams). */

  if (decomp_flags & TINFL_FLAG_PARSE_ZLIB_HEADER) {
    for (counter = 0; counter < 4; ++counter) {
      mz_uint s;
      if (num_bits)
        TINFL_GET_BITS(41, s, 8);
      else
        TINFL_GET_BYTE(42, s);
      r->m_z_adler32 = (r->m_z_adler32 << 8) | s;
    }
  }
  TINFL_CR_RETURN_FOREVER(34, TINFL_STATUS_DONE);

  TINFL_CR_FINISH

common_exit:
  /* As long as we aren't telling the caller that we NEED more input
   * to make forward progress: */
  /* Put back any bytes from the bitbuf in case we've looked ahead too
   * far on gzip, or other Deflate streams followed by arbitrary data.
   */
  /* We need to be very careful here to NOT push back any bytes we
   * definitely know we need to make forward progress, though, or
   * we'll lock the caller up into an inf loop. */
  if ((status != TINFL_STATUS_NEEDS_MORE_INPUT) &&
      (status != TINFL_STATUS_FAILED_CANNOT_MAKE_PROGRESS)) {
    while ((pIn_buf_cur > pIn_buf_next) && (num_bits >= 8)) {
      --pIn_buf_cur;
      num_bits -= 8;
    }
  }
  r->m_num_bits  = num_bits;
  r->m_bit_buf   = bit_buf & ~(~(tinfl_bit_buf_t) 0 << num_bits);
  r->m_dist      = dist;
  r->m_counter   = counter;
  r->m_num_extra = num_extra;
  r->m_dist_from_out_buf_start = dist_from_out_buf_start;
  *pIn_buf_size                = pIn_buf_cur - pIn_buf_next;
  *pOut_buf_size               = pOut_buf_cur - pOut_buf_next;
  if ((decomp_flags &
       (TINFL_FLAG_PARSE_ZLIB_HEADER | TINFL_FLAG_COMPUTE_ADLER32)) &&
      (status >= 0)) {
    const mz_uint8 *ptr     = pOut_buf_next;
    size_t          buf_len = *pOut_buf_size;
    mz_uint32       i, s1 = r->m_check_adler32 & 0xffff,
                 s2  = r->m_check_adler32 >> 16;
    size_t block_len = buf_len % 5552;
    while (buf_len) {
      for (i = 0; i + 7 < block_len; i += 8, ptr += 8) {
        s1 += ptr[0], s2 += s1;
        s1 += ptr[1], s2 += s1;
        s1 += ptr[2], s2 += s1;
        s1 += ptr[3], s2 += s1;
        s1 += ptr[4], s2 += s1;
        s1 += ptr[5], s2 += s1;
        s1 += ptr[6], s2 += s1;
        s1 += ptr[7], s2 += s1;
      }
      for (; i < block_len; ++i) s1 += *ptr++, s2 += s1;
      s1 %= 65521U, s2 %= 65521U;
      buf_len -= block_len;
      block_len = 5552;
    }
    r->m_check_adler32 = (s2 << 16) + s1;
    if ((status == TINFL_STATUS_DONE) &&
        (decomp_flags & TINFL_FLAG_PARSE_ZLIB_HEADER) &&
        (r->m_check_adler32 != r->m_z_adler32))
      status = TINFL_STATUS_ADLER32_MISMATCH;
  }
  return status;
}

/* Higher level helper functions. */
void *tinfl_decompress_mem_to_heap(const void *pSrc_buf,
                                   size_t      src_buf_len,
                                   size_t *pOut_len, int flags) {
  tinfl_decompressor decomp;
  void              *pBuf        = NULL, *pNew_buf;
  size_t             src_buf_ofs = 0, out_buf_capacity = 0;
  *pOut_len = 0;
  tinfl_init(&decomp);
  for (;;) {
    size_t src_buf_size = src_buf_len - src_buf_ofs,
           dst_buf_size = out_buf_capacity - *pOut_len,
           new_out_buf_capacity;
    tinfl_status status = tinfl_decompress(
        &decomp, (const mz_uint8 *) pSrc_buf + src_buf_ofs,
        &src_buf_size, (mz_uint8 *) pBuf,
        pBuf ? (mz_uint8 *) pBuf + *pOut_len : NULL, &dst_buf_size,
        (flags & ~TINFL_FLAG_HAS_MORE_INPUT) |
            TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF);
    if ((status < 0) || (status == TINFL_STATUS_NEEDS_MORE_INPUT)) {
      MZ_FREE(pBuf);
      *pOut_len = 0;
      return NULL;
    }
    src_buf_ofs += src_buf_size;
    *pOut_len += dst_buf_size;
    if (status == TINFL_STATUS_DONE)
      break;
    new_out_buf_capacity = out_buf_capacity * 2;
    if (new_out_buf_capacity < 128)
      new_out_buf_capacity = 128;
    pNew_buf = MZ_REALLOC(pBuf, new_out_buf_capacity);
    if (!pNew_buf) {
      MZ_FREE(pBuf);
      *pOut_len = 0;
      return NULL;
    }
    pBuf             = pNew_buf;
    out_buf_capacity = new_out_buf_capacity;
  }
  return pBuf;
}

size_t tinfl_decompress_mem_to_mem(void *pOut_buf, size_t out_buf_len,
                                   const void *pSrc_buf,
                                   size_t src_buf_len, int flags) {
  tinfl_decompressor decomp;
  tinfl_status       status;
  tinfl_init(&decomp);
  status = tinfl_decompress(
      &decomp, (const mz_uint8 *) pSrc_buf, &src_buf_len,
      (mz_uint8 *) pOut_buf, (mz_uint8 *) pOut_buf, &out_buf_len,
      (flags & ~TINFL_FLAG_HAS_MORE_INPUT) |
          TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF);
  return (status != TINFL_STATUS_DONE)
             ? TINFL_DECOMPRESS_MEM_TO_MEM_FAILED
             : out_buf_len;
}

int tinfl_decompress_mem_to_callback(
    const void *pIn_buf, size_t *pIn_buf_size,
    tinfl_put_buf_func_ptr pPut_buf_func, void *pPut_buf_user,
    int flags) {
  int                result = 0;
  tinfl_decompressor decomp;
  mz_uint8 *pDict      = (mz_uint8 *) MZ_MALLOC(TINFL_LZ_DICT_SIZE);
  size_t    in_buf_ofs = 0, dict_ofs = 0;
  if (!pDict)
    return TINFL_STATUS_FAILED;
  memset(pDict, 0, TINFL_LZ_DICT_SIZE);
  tinfl_init(&decomp);
  for (;;) {
    size_t in_buf_size  = *pIn_buf_size - in_buf_ofs,
           dst_buf_size = TINFL_LZ_DICT_SIZE - dict_ofs;
    tinfl_status status = tinfl_decompress(
        &decomp, (const mz_uint8 *) pIn_buf + in_buf_ofs,
        &in_buf_size, pDict, pDict + dict_ofs, &dst_buf_size,
        (flags & ~(TINFL_FLAG_HAS_MORE_INPUT |
                   TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF)));
    in_buf_ofs += in_buf_size;
    if ((dst_buf_size) &&
        (!(*pPut_buf_func)(pDict + dict_ofs, (int) dst_buf_size,
                           pPut_buf_user)))
      break;
    if (status != TINFL_STATUS_HAS_MORE_OUTPUT) {
      result = (status == TINFL_STATUS_DONE);
      break;
    }
    dict_ofs = (dict_ofs + dst_buf_size) & (TINFL_LZ_DICT_SIZE - 1);
  }
  MZ_FREE(pDict);
  *pIn_buf_size = in_buf_ofs;
  return result;
}

#  ifndef MINIZ_NO_MALLOC
tinfl_decompressor *tinfl_decompressor_alloc(void) {
  tinfl_decompressor *pDecomp = (tinfl_decompressor *) MZ_MALLOC(
      sizeof(tinfl_decompressor));
  if (pDecomp)
    tinfl_init(pDecomp);
  return pDecomp;
}

void tinfl_decompressor_free(tinfl_decompressor *pDecomp) {
  MZ_FREE(pDecomp);
}
#  endif

#  ifdef __cplusplus
}
#  endif

#endif /*#ifndef MINIZ_NO_INFLATE_APIS*/