// // Copyright (c) 2013 Mikko Mononen memon@inside.org // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would be // appreciated but is not required. // 2. Altered source versions must be plainly marked as such, and must not be // misrepresented as being the original software. // 3. This notice may not be removed or altered from any source distribution. // #include <stdlib.h> #include <stdio.h> #include <math.h> #include <memory.h> #include "android.h" #include "nanovg.h" #define FONTSTASH_IMPLEMENTATION #include "fontstash.h" #ifndef NVG_NO_STB #define STB_IMAGE_IMPLEMENTATION #include "../stb/stb_image.h" #endif #ifdef _MSC_VER #pragma warning(disable: 4100) // unreferenced formal parameter #pragma warning(disable: 4127) // conditional expression is constant #pragma warning(disable: 4204) // nonstandard extension used : non-constant aggregate initializer #pragma warning(disable: 4706) // assignment within conditional expression #endif #define NVG_INIT_FONTIMAGE_SIZE 512 #define NVG_MAX_FONTIMAGE_SIZE 2048 #define NVG_MAX_FONTIMAGES 4 #define NVG_INIT_COMMANDS_SIZE 256 #define NVG_INIT_POINTS_SIZE 128 #define NVG_INIT_PATHS_SIZE 16 #define NVG_INIT_VERTS_SIZE 256 #ifndef NVG_MAX_STATES #define NVG_MAX_STATES 64 #endif #define NVG_KAPPA90 0.5522847493f // Length proportional to radius of a cubic bezier handle for 90deg arcs. #define NVG_COUNTOF(arr) (sizeof(arr) / sizeof(0[arr])) enum NVGcommands { NVG_MOVETO = 0, NVG_LINETO = 1, NVG_BEZIERTO = 2, NVG_CLOSE = 3, NVG_WINDING = 4, }; enum NVGpointFlags { NVG_PT_CORNER = 0x01, NVG_PT_LEFT = 0x02, NVG_PT_BEVEL = 0x04, NVG_PR_INNERBEVEL = 0x08, }; struct NVGstate { NVGcompositeOperationState compositeOperation; int shapeAntiAlias; NVGpaint fill; NVGpaint stroke; float strokeWidth; float miterLimit; int lineJoin; int lineCap; float alpha; float xform[6]; NVGscissor scissor; float fontSize; float letterSpacing; float lineHeight; float fontBlur; int textAlign; int fontId; }; typedef struct NVGstate NVGstate; struct NVGpoint { float x,y; float dx, dy; float len; float dmx, dmy; unsigned char flags; }; typedef struct NVGpoint NVGpoint; struct NVGpathCache { NVGpoint* points; int npoints; int cpoints; NVGpath* paths; int npaths; int cpaths; NVGvertex* verts; int nverts; int cverts; float bounds[4]; }; typedef struct NVGpathCache NVGpathCache; struct NVGcontext { NVGparams params; float* commands; int ccommands; int ncommands; float commandx, commandy; NVGstate states[NVG_MAX_STATES]; int nstates; NVGpathCache* cache; float tessTol; float distTol; float fringeWidth; float devicePxRatio; struct FONScontext* fs; int fontImages[NVG_MAX_FONTIMAGES]; int fontImageIdx; int drawCallCount; int fillTriCount; int strokeTriCount; int textTriCount; }; static float nvg__sqrtf(float a) { return sqrtf(a); } static float nvg__modf(float a, float b) { return fmodf(a, b); } static float nvg__sinf(float a) { return sinf(a); } static float nvg__cosf(float a) { return cosf(a); } static float nvg__tanf(float a) { return tanf(a); } static float nvg__atan2f(float a,float b) { return atan2f(a, b); } static float nvg__acosf(float a) { return acosf(a); } static int nvg__mini(int a, int b) { return a < b ? a : b; } static int nvg__maxi(int a, int b) { return a > b ? a : b; } static int nvg__clampi(int a, int mn, int mx) { return a < mn ? mn : (a > mx ? mx : a); } static float nvg__minf(float a, float b) { return a < b ? a : b; } static float nvg__maxf(float a, float b) { return a > b ? a : b; } static float nvg__absf(float a) { return a >= 0.0f ? a : -a; } static float nvg__signf(float a) { return a >= 0.0f ? 1.0f : -1.0f; } static float nvg__clampf(float a, float mn, float mx) { return a < mn ? mn : (a > mx ? mx : a); } static float nvg__cross(float dx0, float dy0, float dx1, float dy1) { return dx1*dy0 - dx0*dy1; } static float nvg__normalize(float *x, float* y) { float d = nvg__sqrtf((*x)*(*x) + (*y)*(*y)); if (d > 1e-6f) { float id = 1.0f / d; *x *= id; *y *= id; } return d; } static void nvg__deletePathCache(NVGpathCache* c) { if (c == NULL) return; if (c->points != NULL) free(c->points); if (c->paths != NULL) free(c->paths); if (c->verts != NULL) free(c->verts); free(c); } static NVGpathCache* nvg__allocPathCache(void) { NVGpathCache* c = (NVGpathCache*)malloc(sizeof(NVGpathCache)); if (c == NULL) goto error; memset(c, 0, sizeof(NVGpathCache)); c->points = (NVGpoint*)malloc(sizeof(NVGpoint)*NVG_INIT_POINTS_SIZE); if (!c->points) goto error; c->npoints = 0; c->cpoints = NVG_INIT_POINTS_SIZE; c->paths = (NVGpath*)malloc(sizeof(NVGpath)*NVG_INIT_PATHS_SIZE); if (!c->paths) goto error; c->npaths = 0; c->cpaths = NVG_INIT_PATHS_SIZE; c->verts = (NVGvertex*)malloc(sizeof(NVGvertex)*NVG_INIT_VERTS_SIZE); if (!c->verts) goto error; c->nverts = 0; c->cverts = NVG_INIT_VERTS_SIZE; return c; error: nvg__deletePathCache(c); return NULL; } static void nvg__setDevicePixelRatio(NVGcontext* ctx, float ratio) { ctx->tessTol = 0.25f / ratio; ctx->distTol = 0.01f / ratio; ctx->fringeWidth = 1.0f / ratio; ctx->devicePxRatio = ratio; } static NVGcompositeOperationState nvg__compositeOperationState(int op) { int sfactor, dfactor; if (op == NVG_SOURCE_OVER) { sfactor = NVG_ONE; dfactor = NVG_ONE_MINUS_SRC_ALPHA; } else if (op == NVG_SOURCE_IN) { sfactor = NVG_DST_ALPHA; dfactor = NVG_ZERO; } else if (op == NVG_SOURCE_OUT) { sfactor = NVG_ONE_MINUS_DST_ALPHA; dfactor = NVG_ZERO; } else if (op == NVG_ATOP) { sfactor = NVG_DST_ALPHA; dfactor = NVG_ONE_MINUS_SRC_ALPHA; } else if (op == NVG_DESTINATION_OVER) { sfactor = NVG_ONE_MINUS_DST_ALPHA; dfactor = NVG_ONE; } else if (op == NVG_DESTINATION_IN) { sfactor = NVG_ZERO; dfactor = NVG_SRC_ALPHA; } else if (op == NVG_DESTINATION_OUT) { sfactor = NVG_ZERO; dfactor = NVG_ONE_MINUS_SRC_ALPHA; } else if (op == NVG_DESTINATION_ATOP) { sfactor = NVG_ONE_MINUS_DST_ALPHA; dfactor = NVG_SRC_ALPHA; } else if (op == NVG_LIGHTER) { sfactor = NVG_ONE; dfactor = NVG_ONE; } else if (op == NVG_COPY) { sfactor = NVG_ONE; dfactor = NVG_ZERO; } else if (op == NVG_XOR) { sfactor = NVG_ONE_MINUS_DST_ALPHA; dfactor = NVG_ONE_MINUS_SRC_ALPHA; } else { sfactor = NVG_ONE; dfactor = NVG_ZERO; } NVGcompositeOperationState state; state.srcRGB = sfactor; state.dstRGB = dfactor; state.srcAlpha = sfactor; state.dstAlpha = dfactor; return state; } static NVGstate* nvg__getState(NVGcontext* ctx) { return &ctx->states[ctx->nstates-1]; } NVGcontext* nvgCreateInternal(NVGparams* params) { FONSparams fontParams; NVGcontext* ctx = (NVGcontext*)malloc(sizeof(NVGcontext)); int i; if (ctx == NULL) goto error; memset(ctx, 0, sizeof(NVGcontext)); ctx->params = *params; for (i = 0; i < NVG_MAX_FONTIMAGES; i++) ctx->fontImages[i] = 0; ctx->commands = (float*)malloc(sizeof(float)*NVG_INIT_COMMANDS_SIZE); if (!ctx->commands) goto error; ctx->ncommands = 0; ctx->ccommands = NVG_INIT_COMMANDS_SIZE; ctx->cache = nvg__allocPathCache(); if (ctx->cache == NULL) goto error; nvgSave(ctx); nvgReset(ctx); nvg__setDevicePixelRatio(ctx, 1.0f); if (ctx->params.renderCreate(ctx->params.userPtr) == 0) goto error; // Init font rendering memset(&fontParams, 0, sizeof(fontParams)); fontParams.width = NVG_INIT_FONTIMAGE_SIZE; fontParams.height = NVG_INIT_FONTIMAGE_SIZE; fontParams.flags = FONS_ZERO_TOPLEFT; fontParams.renderCreate = NULL; fontParams.renderUpdate = NULL; fontParams.renderDraw = NULL; fontParams.renderDelete = NULL; fontParams.userPtr = NULL; ctx->fs = fonsCreateInternal(&fontParams); if (ctx->fs == NULL) goto error; // Create font texture ctx->fontImages[0] = ctx->params.renderCreateTexture(ctx->params.userPtr, NVG_TEXTURE_ALPHA, fontParams.width, fontParams.height, 0, NULL); if (ctx->fontImages[0] == 0) goto error; ctx->fontImageIdx = 0; return ctx; error: nvgDeleteInternal(ctx); return 0; } NVGparams* nvgInternalParams(NVGcontext* ctx) { return &ctx->params; } void nvgDeleteInternal(NVGcontext* ctx) { int i; if (ctx == NULL) return; if (ctx->commands != NULL) free(ctx->commands); if (ctx->cache != NULL) nvg__deletePathCache(ctx->cache); if (ctx->fs) fonsDeleteInternal(ctx->fs); for (i = 0; i < NVG_MAX_FONTIMAGES; i++) { if (ctx->fontImages[i] != 0) { nvgDeleteImage(ctx, ctx->fontImages[i]); ctx->fontImages[i] = 0; } } if (ctx->params.renderDelete != NULL) ctx->params.renderDelete(ctx->params.userPtr); free(ctx); } void nvgBeginFrame(NVGcontext* ctx, float windowWidth, float windowHeight, float devicePixelRatio) { /* printf("Tris: draws:%d fill:%d stroke:%d text:%d TOT:%d\n", ctx->drawCallCount, ctx->fillTriCount, ctx->strokeTriCount, ctx->textTriCount, ctx->fillTriCount+ctx->strokeTriCount+ctx->textTriCount);*/ ctx->nstates = 0; nvgSave(ctx); nvgReset(ctx); nvg__setDevicePixelRatio(ctx, devicePixelRatio); ctx->params.renderViewport(ctx->params.userPtr, windowWidth, windowHeight, devicePixelRatio); ctx->drawCallCount = 0; ctx->fillTriCount = 0; ctx->strokeTriCount = 0; ctx->textTriCount = 0; } void nvgCancelFrame(NVGcontext* ctx) { ctx->params.renderCancel(ctx->params.userPtr); } void nvgEndFrame(NVGcontext* ctx) { ctx->params.renderFlush(ctx->params.userPtr); if (ctx->fontImageIdx != 0) { int fontImage = ctx->fontImages[ctx->fontImageIdx]; ctx->fontImages[ctx->fontImageIdx] = 0; int i, j, iw, ih; // delete images that smaller than current one if (fontImage == 0) return; nvgImageSize(ctx, fontImage, &iw, &ih); for (i = j = 0; i < ctx->fontImageIdx; i++) { if (ctx->fontImages[i] != 0) { int nw, nh; int image = ctx->fontImages[i]; ctx->fontImages[i] = 0; nvgImageSize(ctx, image, &nw, &nh); if (nw < iw || nh < ih) nvgDeleteImage(ctx, image); else ctx->fontImages[j++] = image; } } // make current font image to first ctx->fontImages[j] = ctx->fontImages[0]; ctx->fontImages[0] = fontImage; ctx->fontImageIdx = 0; } } NVGcolor nvgRGB(unsigned char r, unsigned char g, unsigned char b) { return nvgRGBA(r,g,b,255); } NVGcolor nvgRGBf(float r, float g, float b) { return nvgRGBAf(r,g,b,1.0f); } NVGcolor nvgRGBA(unsigned char r, unsigned char g, unsigned char b, unsigned char a) { NVGcolor color; // Use longer initialization to suppress warning. color.r = r / 255.0f; color.g = g / 255.0f; color.b = b / 255.0f; color.a = a / 255.0f; return color; } NVGcolor nvgRGBAf(float r, float g, float b, float a) { NVGcolor color; // Use longer initialization to suppress warning. color.r = r; color.g = g; color.b = b; color.a = a; return color; } NVGcolor nvgTransRGBA(NVGcolor c, unsigned char a) { c.a = a / 255.0f; return c; } NVGcolor nvgTransRGBAf(NVGcolor c, float a) { c.a = a; return c; } NVGcolor nvgLerpRGBA(NVGcolor c0, NVGcolor c1, float u) { int i; float oneminu; NVGcolor cint = {{{0}}}; u = nvg__clampf(u, 0.0f, 1.0f); oneminu = 1.0f - u; for( i = 0; i <4; i++ ) { cint.rgba[i] = c0.rgba[i] * oneminu + c1.rgba[i] * u; } return cint; } NVGcolor nvgHSL(float h, float s, float l) { return nvgHSLA(h,s,l,255); } static float nvg__hue(float h, float m1, float m2) { if (h < 0) h += 1; if (h > 1) h -= 1; if (h < 1.0f/6.0f) return m1 + (m2 - m1) * h * 6.0f; else if (h < 3.0f/6.0f) return m2; else if (h < 4.0f/6.0f) return m1 + (m2 - m1) * (2.0f/3.0f - h) * 6.0f; return m1; } NVGcolor nvgHSLA(float h, float s, float l, unsigned char a) { float m1, m2; NVGcolor col; h = nvg__modf(h, 1.0f); if (h < 0.0f) h += 1.0f; s = nvg__clampf(s, 0.0f, 1.0f); l = nvg__clampf(l, 0.0f, 1.0f); m2 = l <= 0.5f ? (l * (1 + s)) : (l + s - l * s); m1 = 2 * l - m2; col.r = nvg__clampf(nvg__hue(h + 1.0f/3.0f, m1, m2), 0.0f, 1.0f); col.g = nvg__clampf(nvg__hue(h, m1, m2), 0.0f, 1.0f); col.b = nvg__clampf(nvg__hue(h - 1.0f/3.0f, m1, m2), 0.0f, 1.0f); col.a = a/255.0f; return col; } void nvgTransformIdentity(float* t) { t[0] = 1.0f; t[1] = 0.0f; t[2] = 0.0f; t[3] = 1.0f; t[4] = 0.0f; t[5] = 0.0f; } void nvgTransformTranslate(float* t, float tx, float ty) { t[0] = 1.0f; t[1] = 0.0f; t[2] = 0.0f; t[3] = 1.0f; t[4] = tx; t[5] = ty; } void nvgTransformScale(float* t, float sx, float sy) { t[0] = sx; t[1] = 0.0f; t[2] = 0.0f; t[3] = sy; t[4] = 0.0f; t[5] = 0.0f; } void nvgTransformRotate(float* t, float a) { float cs = nvg__cosf(a), sn = nvg__sinf(a); t[0] = cs; t[1] = sn; t[2] = -sn; t[3] = cs; t[4] = 0.0f; t[5] = 0.0f; } void nvgTransformSkewX(float* t, float a) { t[0] = 1.0f; t[1] = 0.0f; t[2] = nvg__tanf(a); t[3] = 1.0f; t[4] = 0.0f; t[5] = 0.0f; } void nvgTransformSkewY(float* t, float a) { t[0] = 1.0f; t[1] = nvg__tanf(a); t[2] = 0.0f; t[3] = 1.0f; t[4] = 0.0f; t[5] = 0.0f; } void nvgTransformMultiply(float* t, const float* s) { float t0 = t[0] * s[0] + t[1] * s[2]; float t2 = t[2] * s[0] + t[3] * s[2]; float t4 = t[4] * s[0] + t[5] * s[2] + s[4]; t[1] = t[0] * s[1] + t[1] * s[3]; t[3] = t[2] * s[1] + t[3] * s[3]; t[5] = t[4] * s[1] + t[5] * s[3] + s[5]; t[0] = t0; t[2] = t2; t[4] = t4; } void nvgTransformPremultiply(float* t, const float* s) { float s2[6]; memcpy(s2, s, sizeof(float)*6); nvgTransformMultiply(s2, t); memcpy(t, s2, sizeof(float)*6); } int nvgTransformInverse(float* inv, const float* t) { double invdet, det = (double)t[0] * t[3] - (double)t[2] * t[1]; if (det > -1e-6 && det < 1e-6) { nvgTransformIdentity(inv); return 0; } invdet = 1.0 / det; inv[0] = (float)(t[3] * invdet); inv[2] = (float)(-t[2] * invdet); inv[4] = (float)(((double)t[2] * t[5] - (double)t[3] * t[4]) * invdet); inv[1] = (float)(-t[1] * invdet); inv[3] = (float)(t[0] * invdet); inv[5] = (float)(((double)t[1] * t[4] - (double)t[0] * t[5]) * invdet); return 1; } void nvgTransformPoint(float* dx, float* dy, const float* t, float sx, float sy) { *dx = sx*t[0] + sy*t[2] + t[4]; *dy = sx*t[1] + sy*t[3] + t[5]; } float nvgDegToRad(float deg) { return deg / 180.0f * NVG_PI; } float nvgRadToDeg(float rad) { return rad / NVG_PI * 180.0f; } static void nvg__setPaintColor(NVGpaint* p, NVGcolor color) { memset(p, 0, sizeof(*p)); nvgTransformIdentity(p->xform); p->radius = 0.0f; p->feather = 1.0f; p->innerColor = color; p->outerColor = color; } // State handling void nvgSave(NVGcontext* ctx) { if (ctx->nstates >= NVG_MAX_STATES) return; if (ctx->nstates > 0) memcpy(&ctx->states[ctx->nstates], &ctx->states[ctx->nstates-1], sizeof(NVGstate)); ctx->nstates++; } void nvgRestore(NVGcontext* ctx) { if (ctx->nstates <= 1) return; ctx->nstates--; } void nvgReset(NVGcontext* ctx) { NVGstate* state = nvg__getState(ctx); memset(state, 0, sizeof(*state)); nvg__setPaintColor(&state->fill, nvgRGBA(255,255,255,255)); nvg__setPaintColor(&state->stroke, nvgRGBA(0,0,0,255)); state->compositeOperation = nvg__compositeOperationState(NVG_SOURCE_OVER); state->shapeAntiAlias = 1; state->strokeWidth = 1.0f; state->miterLimit = 10.0f; state->lineCap = NVG_BUTT; state->lineJoin = NVG_MITER; state->alpha = 1.0f; nvgTransformIdentity(state->xform); state->scissor.extent[0] = -1.0f; state->scissor.extent[1] = -1.0f; state->fontSize = 16.0f; state->letterSpacing = 0.0f; state->lineHeight = 1.0f; state->fontBlur = 0.0f; state->textAlign = NVG_ALIGN_LEFT | NVG_ALIGN_BASELINE; state->fontId = 0; } // State setting void nvgShapeAntiAlias(NVGcontext* ctx, int enabled) { NVGstate* state = nvg__getState(ctx); state->shapeAntiAlias = enabled; } void nvgStrokeWidth(NVGcontext* ctx, float width) { NVGstate* state = nvg__getState(ctx); state->strokeWidth = width; } void nvgMiterLimit(NVGcontext* ctx, float limit) { NVGstate* state = nvg__getState(ctx); state->miterLimit = limit; } void nvgLineCap(NVGcontext* ctx, int cap) { NVGstate* state = nvg__getState(ctx); state->lineCap = cap; } void nvgLineJoin(NVGcontext* ctx, int join) { NVGstate* state = nvg__getState(ctx); state->lineJoin = join; } void nvgGlobalAlpha(NVGcontext* ctx, float alpha) { NVGstate* state = nvg__getState(ctx); state->alpha = alpha; } void nvgTransform(NVGcontext* ctx, float a, float b, float c, float d, float e, float f) { NVGstate* state = nvg__getState(ctx); float t[6] = { a, b, c, d, e, f }; nvgTransformPremultiply(state->xform, t); } void nvgResetTransform(NVGcontext* ctx) { NVGstate* state = nvg__getState(ctx); nvgTransformIdentity(state->xform); } void nvgTranslate(NVGcontext* ctx, float x, float y) { NVGstate* state = nvg__getState(ctx); float t[6]; nvgTransformTranslate(t, x,y); nvgTransformPremultiply(state->xform, t); } void nvgRotate(NVGcontext* ctx, float angle) { NVGstate* state = nvg__getState(ctx); float t[6]; nvgTransformRotate(t, angle); nvgTransformPremultiply(state->xform, t); } void nvgSkewX(NVGcontext* ctx, float angle) { NVGstate* state = nvg__getState(ctx); float t[6]; nvgTransformSkewX(t, angle); nvgTransformPremultiply(state->xform, t); } void nvgSkewY(NVGcontext* ctx, float angle) { NVGstate* state = nvg__getState(ctx); float t[6]; nvgTransformSkewY(t, angle); nvgTransformPremultiply(state->xform, t); } void nvgScale(NVGcontext* ctx, float x, float y) { NVGstate* state = nvg__getState(ctx); float t[6]; nvgTransformScale(t, x,y); nvgTransformPremultiply(state->xform, t); } void nvgCurrentTransform(NVGcontext* ctx, float* xform) { NVGstate* state = nvg__getState(ctx); if (xform == NULL) return; memcpy(xform, state->xform, sizeof(float)*6); } void nvgStrokeColor(NVGcontext* ctx, NVGcolor color) { NVGstate* state = nvg__getState(ctx); nvg__setPaintColor(&state->stroke, color); } void nvgStrokePaint(NVGcontext* ctx, NVGpaint paint) { NVGstate* state = nvg__getState(ctx); state->stroke = paint; nvgTransformMultiply(state->stroke.xform, state->xform); } void nvgFillColor(NVGcontext* ctx, NVGcolor color) { NVGstate* state = nvg__getState(ctx); nvg__setPaintColor(&state->fill, color); } void nvgFillPaint(NVGcontext* ctx, NVGpaint paint) { NVGstate* state = nvg__getState(ctx); state->fill = paint; nvgTransformMultiply(state->fill.xform, state->xform); } #ifndef NVG_NO_STB int nvgCreateImage(NVGcontext* ctx, const char* filename, int imageFlags) { int w, h, n, image; unsigned char* img; stbi_set_unpremultiply_on_load(1); stbi_convert_iphone_png_to_rgb(1); img = stbi_load(filename, &w, &h, &n, 4); if (img == NULL) { // printf("Failed to load %s - %s\n", filename, stbi_failure_reason()); return 0; } image = nvgCreateImageRGBA(ctx, w, h, imageFlags, img); stbi_image_free(img); return image; } int nvgCreateImageMem(NVGcontext* ctx, int imageFlags, unsigned char* data, int ndata) { int w, h, n, image; unsigned char* img = stbi_load_from_memory(data, ndata, &w, &h, &n, 4); if (img == NULL) { // printf("Failed to load %s - %s\n", filename, stbi_failure_reason()); return 0; } image = nvgCreateImageRGBA(ctx, w, h, imageFlags, img); stbi_image_free(img); return image; } #endif int nvgCreateImageRGBA(NVGcontext* ctx, int w, int h, int imageFlags, const unsigned char* data) { return ctx->params.renderCreateTexture(ctx->params.userPtr, NVG_TEXTURE_RGBA, w, h, imageFlags, data); } int nvgCreateImageAlpha(NVGcontext* ctx, int w, int h, int imageFlags, const unsigned char* data) { return ctx->params.renderCreateTexture(ctx->params.userPtr, NVG_TEXTURE_ALPHA, w, h, imageFlags, data); } void nvgUpdateImage(NVGcontext* ctx, int image, const unsigned char* data) { int w, h; ctx->params.renderGetTextureSize(ctx->params.userPtr, image, &w, &h); ctx->params.renderUpdateTexture(ctx->params.userPtr, image, 0,0, w,h, data); } void nvgImageSize(NVGcontext* ctx, int image, int* w, int* h) { ctx->params.renderGetTextureSize(ctx->params.userPtr, image, w, h); } void nvgDeleteImage(NVGcontext* ctx, int image) { ctx->params.renderDeleteTexture(ctx->params.userPtr, image); } NVGpaint nvgLinearGradient(NVGcontext* ctx, float sx, float sy, float ex, float ey, NVGcolor icol, NVGcolor ocol) { NVGpaint p; float dx, dy, d; const float large = 1e5; NVG_NOTUSED(ctx); memset(&p, 0, sizeof(p)); // Calculate transform aligned to the line dx = ex - sx; dy = ey - sy; d = sqrtf(dx*dx + dy*dy); if (d > 0.0001f) { dx /= d; dy /= d; } else { dx = 0; dy = 1; } p.xform[0] = dy; p.xform[1] = -dx; p.xform[2] = dx; p.xform[3] = dy; p.xform[4] = sx - dx*large; p.xform[5] = sy - dy*large; p.extent[0] = large; p.extent[1] = large + d*0.5f; p.radius = 0.0f; p.feather = nvg__maxf(1.0f, d); p.innerColor = icol; p.outerColor = ocol; return p; } NVGpaint nvgRadialGradient(NVGcontext* ctx, float cx, float cy, float inr, float outr, NVGcolor icol, NVGcolor ocol) { NVGpaint p; float r = (inr+outr)*0.5f; float f = (outr-inr); NVG_NOTUSED(ctx); memset(&p, 0, sizeof(p)); nvgTransformIdentity(p.xform); p.xform[4] = cx; p.xform[5] = cy; p.extent[0] = r; p.extent[1] = r; p.radius = r; p.feather = nvg__maxf(1.0f, f); p.innerColor = icol; p.outerColor = ocol; return p; } NVGpaint nvgBoxGradient(NVGcontext* ctx, float x, float y, float w, float h, float r, float f, NVGcolor icol, NVGcolor ocol) { NVGpaint p; NVG_NOTUSED(ctx); memset(&p, 0, sizeof(p)); nvgTransformIdentity(p.xform); p.xform[4] = x+w*0.5f; p.xform[5] = y+h*0.5f; p.extent[0] = w*0.5f; p.extent[1] = h*0.5f; p.radius = r; p.feather = nvg__maxf(1.0f, f); p.innerColor = icol; p.outerColor = ocol; return p; } NVGpaint nvgImagePattern(NVGcontext* ctx, float cx, float cy, float w, float h, float angle, int image, float alpha) { NVGpaint p; NVG_NOTUSED(ctx); memset(&p, 0, sizeof(p)); nvgTransformRotate(p.xform, angle); p.xform[4] = cx; p.xform[5] = cy; p.extent[0] = w; p.extent[1] = h; p.image = image; p.innerColor = p.outerColor = nvgRGBAf(1,1,1,alpha); return p; } // Scissoring void nvgScissor(NVGcontext* ctx, float x, float y, float w, float h) { NVGstate* state = nvg__getState(ctx); w = nvg__maxf(0.0f, w); h = nvg__maxf(0.0f, h); nvgTransformIdentity(state->scissor.xform); state->scissor.xform[4] = x+w*0.5f; state->scissor.xform[5] = y+h*0.5f; nvgTransformMultiply(state->scissor.xform, state->xform); state->scissor.extent[0] = w*0.5f; state->scissor.extent[1] = h*0.5f; } static void nvg__isectRects(float* dst, float ax, float ay, float aw, float ah, float bx, float by, float bw, float bh) { float minx = nvg__maxf(ax, bx); float miny = nvg__maxf(ay, by); float maxx = nvg__minf(ax+aw, bx+bw); float maxy = nvg__minf(ay+ah, by+bh); dst[0] = minx; dst[1] = miny; dst[2] = nvg__maxf(0.0f, maxx - minx); dst[3] = nvg__maxf(0.0f, maxy - miny); } void nvgIntersectScissor(NVGcontext* ctx, float x, float y, float w, float h) { NVGstate* state = nvg__getState(ctx); float pxform[6], invxorm[6]; float rect[4]; float ex, ey, tex, tey; // If no previous scissor has been set, set the scissor as current scissor. if (state->scissor.extent[0] < 0) { nvgScissor(ctx, x, y, w, h); return; } // Transform the current scissor rect into current transform space. // If there is difference in rotation, this will be approximation. memcpy(pxform, state->scissor.xform, sizeof(float)*6); ex = state->scissor.extent[0]; ey = state->scissor.extent[1]; nvgTransformInverse(invxorm, state->xform); nvgTransformMultiply(pxform, invxorm); tex = ex*nvg__absf(pxform[0]) + ey*nvg__absf(pxform[2]); tey = ex*nvg__absf(pxform[1]) + ey*nvg__absf(pxform[3]); // Intersect rects. nvg__isectRects(rect, pxform[4]-tex,pxform[5]-tey,tex*2,tey*2, x,y,w,h); nvgScissor(ctx, rect[0], rect[1], rect[2], rect[3]); } void nvgResetScissor(NVGcontext* ctx) { NVGstate* state = nvg__getState(ctx); memset(state->scissor.xform, 0, sizeof(state->scissor.xform)); state->scissor.extent[0] = -1.0f; state->scissor.extent[1] = -1.0f; } // Global composite operation. void nvgGlobalCompositeOperation(NVGcontext* ctx, int op) { NVGstate* state = nvg__getState(ctx); state->compositeOperation = nvg__compositeOperationState(op); } void nvgGlobalCompositeBlendFunc(NVGcontext* ctx, int sfactor, int dfactor) { nvgGlobalCompositeBlendFuncSeparate(ctx, sfactor, dfactor, sfactor, dfactor); } void nvgGlobalCompositeBlendFuncSeparate(NVGcontext* ctx, int srcRGB, int dstRGB, int srcAlpha, int dstAlpha) { NVGcompositeOperationState op; op.srcRGB = srcRGB; op.dstRGB = dstRGB; op.srcAlpha = srcAlpha; op.dstAlpha = dstAlpha; NVGstate* state = nvg__getState(ctx); state->compositeOperation = op; } static int nvg__ptEquals(float x1, float y1, float x2, float y2, float tol) { float dx = x2 - x1; float dy = y2 - y1; return dx*dx + dy*dy < tol*tol; } static float nvg__distPtSeg(float x, float y, float px, float py, float qx, float qy) { float pqx, pqy, dx, dy, d, t; pqx = qx-px; pqy = qy-py; dx = x-px; dy = y-py; d = pqx*pqx + pqy*pqy; t = pqx*dx + pqy*dy; if (d > 0) t /= d; if (t < 0) t = 0; else if (t > 1) t = 1; dx = px + t*pqx - x; dy = py + t*pqy - y; return dx*dx + dy*dy; } static void nvg__appendCommands(NVGcontext* ctx, float* vals, int nvals) { NVGstate* state = nvg__getState(ctx); int i; if (ctx->ncommands+nvals > ctx->ccommands) { float* commands; int ccommands = ctx->ncommands+nvals + ctx->ccommands/2; commands = (float*)realloc(ctx->commands, sizeof(float)*ccommands); if (commands == NULL) return; ctx->commands = commands; ctx->ccommands = ccommands; } if ((int)vals[0] != NVG_CLOSE && (int)vals[0] != NVG_WINDING) { ctx->commandx = vals[nvals-2]; ctx->commandy = vals[nvals-1]; } // transform commands i = 0; while (i < nvals) { int cmd = (int)vals[i]; switch (cmd) { case NVG_MOVETO: nvgTransformPoint(&vals[i+1],&vals[i+2], state->xform, vals[i+1],vals[i+2]); i += 3; break; case NVG_LINETO: nvgTransformPoint(&vals[i+1],&vals[i+2], state->xform, vals[i+1],vals[i+2]); i += 3; break; case NVG_BEZIERTO: nvgTransformPoint(&vals[i+1],&vals[i+2], state->xform, vals[i+1],vals[i+2]); nvgTransformPoint(&vals[i+3],&vals[i+4], state->xform, vals[i+3],vals[i+4]); nvgTransformPoint(&vals[i+5],&vals[i+6], state->xform, vals[i+5],vals[i+6]); i += 7; break; case NVG_CLOSE: i++; break; case NVG_WINDING: i += 2; break; default: i++; } } memcpy(&ctx->commands[ctx->ncommands], vals, nvals*sizeof(float)); ctx->ncommands += nvals; } static void nvg__clearPathCache(NVGcontext* ctx) { ctx->cache->npoints = 0; ctx->cache->npaths = 0; } static NVGpath* nvg__lastPath(NVGcontext* ctx) { if (ctx->cache->npaths > 0) return &ctx->cache->paths[ctx->cache->npaths-1]; return NULL; } static void nvg__addPath(NVGcontext* ctx) { NVGpath* path; if (ctx->cache->npaths+1 > ctx->cache->cpaths) { NVGpath* paths; int cpaths = ctx->cache->npaths+1 + ctx->cache->cpaths/2; paths = (NVGpath*)realloc(ctx->cache->paths, sizeof(NVGpath)*cpaths); if (paths == NULL) return; ctx->cache->paths = paths; ctx->cache->cpaths = cpaths; } path = &ctx->cache->paths[ctx->cache->npaths]; memset(path, 0, sizeof(*path)); path->first = ctx->cache->npoints; path->winding = NVG_CCW; ctx->cache->npaths++; } static NVGpoint* nvg__lastPoint(NVGcontext* ctx) { if (ctx->cache->npoints > 0) return &ctx->cache->points[ctx->cache->npoints-1]; return NULL; } static void nvg__addPoint(NVGcontext* ctx, float x, float y, int flags) { NVGpath* path = nvg__lastPath(ctx); NVGpoint* pt; if (path == NULL) return; if (path->count > 0 && ctx->cache->npoints > 0) { pt = nvg__lastPoint(ctx); if (nvg__ptEquals(pt->x,pt->y, x,y, ctx->distTol)) { pt->flags |= flags; return; } } if (ctx->cache->npoints+1 > ctx->cache->cpoints) { NVGpoint* points; int cpoints = ctx->cache->npoints+1 + ctx->cache->cpoints/2; points = (NVGpoint*)realloc(ctx->cache->points, sizeof(NVGpoint)*cpoints); if (points == NULL) return; ctx->cache->points = points; ctx->cache->cpoints = cpoints; } pt = &ctx->cache->points[ctx->cache->npoints]; memset(pt, 0, sizeof(*pt)); pt->x = x; pt->y = y; pt->flags = (unsigned char)flags; ctx->cache->npoints++; path->count++; } static void nvg__closePath(NVGcontext* ctx) { NVGpath* path = nvg__lastPath(ctx); if (path == NULL) return; path->closed = 1; } static void nvg__pathWinding(NVGcontext* ctx, int winding) { NVGpath* path = nvg__lastPath(ctx); if (path == NULL) return; path->winding = winding; } static float nvg__getAverageScale(float *t) { float sx = sqrtf(t[0]*t[0] + t[2]*t[2]); float sy = sqrtf(t[1]*t[1] + t[3]*t[3]); return (sx + sy) * 0.5f; } static NVGvertex* nvg__allocTempVerts(NVGcontext* ctx, int nverts) { if (nverts > ctx->cache->cverts) { NVGvertex* verts; int cverts = (nverts + 0xff) & ~0xff; // Round up to prevent allocations when things change just slightly. verts = (NVGvertex*)realloc(ctx->cache->verts, sizeof(NVGvertex)*cverts); if (verts == NULL) return NULL; ctx->cache->verts = verts; ctx->cache->cverts = cverts; } return ctx->cache->verts; } static float nvg__triarea2(float ax, float ay, float bx, float by, float cx, float cy) { float abx = bx - ax; float aby = by - ay; float acx = cx - ax; float acy = cy - ay; return acx*aby - abx*acy; } static float nvg__polyArea(NVGpoint* pts, int npts) { int i; float area = 0; for (i = 2; i < npts; i++) { NVGpoint* a = &pts[0]; NVGpoint* b = &pts[i-1]; NVGpoint* c = &pts[i]; area += nvg__triarea2(a->x,a->y, b->x,b->y, c->x,c->y); } return area * 0.5f; } static void nvg__polyReverse(NVGpoint* pts, int npts) { NVGpoint tmp; int i = 0, j = npts-1; while (i < j) { tmp = pts[i]; pts[i] = pts[j]; pts[j] = tmp; i++; j--; } } static void nvg__vset(NVGvertex* vtx, float x, float y, float u, float v) { vtx->x = x; vtx->y = y; vtx->u = u; vtx->v = v; } static void nvg__tesselateBezier(NVGcontext* ctx, float x1, float y1, float x2, float y2, float x3, float y3, float x4, float y4, int level, int type) { float x12,y12,x23,y23,x34,y34,x123,y123,x234,y234,x1234,y1234; float dx,dy,d2,d3; if (level > 10) return; x12 = (x1+x2)*0.5f; y12 = (y1+y2)*0.5f; x23 = (x2+x3)*0.5f; y23 = (y2+y3)*0.5f; x34 = (x3+x4)*0.5f; y34 = (y3+y4)*0.5f; x123 = (x12+x23)*0.5f; y123 = (y12+y23)*0.5f; dx = x4 - x1; dy = y4 - y1; d2 = nvg__absf(((x2 - x4) * dy - (y2 - y4) * dx)); d3 = nvg__absf(((x3 - x4) * dy - (y3 - y4) * dx)); if ((d2 + d3)*(d2 + d3) < ctx->tessTol * (dx*dx + dy*dy)) { nvg__addPoint(ctx, x4, y4, type); return; } /* if (nvg__absf(x1+x3-x2-x2) + nvg__absf(y1+y3-y2-y2) + nvg__absf(x2+x4-x3-x3) + nvg__absf(y2+y4-y3-y3) < ctx->tessTol) { nvg__addPoint(ctx, x4, y4, type); return; }*/ x234 = (x23+x34)*0.5f; y234 = (y23+y34)*0.5f; x1234 = (x123+x234)*0.5f; y1234 = (y123+y234)*0.5f; nvg__tesselateBezier(ctx, x1,y1, x12,y12, x123,y123, x1234,y1234, level+1, 0); nvg__tesselateBezier(ctx, x1234,y1234, x234,y234, x34,y34, x4,y4, level+1, type); } static void nvg__flattenPaths(NVGcontext* ctx) { NVGpathCache* cache = ctx->cache; // NVGstate* state = nvg__getState(ctx); NVGpoint* last; NVGpoint* p0; NVGpoint* p1; NVGpoint* pts; NVGpath* path; int i, j; float* cp1; float* cp2; float* p; float area; if (cache->npaths > 0) return; // Flatten i = 0; while (i < ctx->ncommands) { int cmd = (int)ctx->commands[i]; switch (cmd) { case NVG_MOVETO: nvg__addPath(ctx); p = &ctx->commands[i+1]; nvg__addPoint(ctx, p[0], p[1], NVG_PT_CORNER); i += 3; break; case NVG_LINETO: p = &ctx->commands[i+1]; nvg__addPoint(ctx, p[0], p[1], NVG_PT_CORNER); i += 3; break; case NVG_BEZIERTO: last = nvg__lastPoint(ctx); if (last != NULL) { cp1 = &ctx->commands[i+1]; cp2 = &ctx->commands[i+3]; p = &ctx->commands[i+5]; nvg__tesselateBezier(ctx, last->x,last->y, cp1[0],cp1[1], cp2[0],cp2[1], p[0],p[1], 0, NVG_PT_CORNER); } i += 7; break; case NVG_CLOSE: nvg__closePath(ctx); i++; break; case NVG_WINDING: nvg__pathWinding(ctx, (int)ctx->commands[i+1]); i += 2; break; default: i++; } } cache->bounds[0] = cache->bounds[1] = 1e6f; cache->bounds[2] = cache->bounds[3] = -1e6f; // Calculate the direction and length of line segments. for (j = 0; j < cache->npaths; j++) { path = &cache->paths[j]; pts = &cache->points[path->first]; // If the first and last points are the same, remove the last, mark as closed path. p0 = &pts[path->count-1]; p1 = &pts[0]; if (nvg__ptEquals(p0->x,p0->y, p1->x,p1->y, ctx->distTol)) { path->count--; p0 = &pts[path->count-1]; path->closed = 1; } // Enforce winding. if (path->count > 2) { area = nvg__polyArea(pts, path->count); if (path->winding == NVG_CCW && area < 0.0f) nvg__polyReverse(pts, path->count); if (path->winding == NVG_CW && area > 0.0f) nvg__polyReverse(pts, path->count); } for(i = 0; i < path->count; i++) { // Calculate segment direction and length p0->dx = p1->x - p0->x; p0->dy = p1->y - p0->y; p0->len = nvg__normalize(&p0->dx, &p0->dy); // Update bounds cache->bounds[0] = nvg__minf(cache->bounds[0], p0->x); cache->bounds[1] = nvg__minf(cache->bounds[1], p0->y); cache->bounds[2] = nvg__maxf(cache->bounds[2], p0->x); cache->bounds[3] = nvg__maxf(cache->bounds[3], p0->y); // Advance p0 = p1++; } } } static int nvg__curveDivs(float r, float arc, float tol) { float da = acosf(r / (r + tol)) * 2.0f; return nvg__maxi(2, (int)ceilf(arc / da)); } static void nvg__chooseBevel(int bevel, NVGpoint* p0, NVGpoint* p1, float w, float* x0, float* y0, float* x1, float* y1) { if (bevel) { *x0 = p1->x + p0->dy * w; *y0 = p1->y - p0->dx * w; *x1 = p1->x + p1->dy * w; *y1 = p1->y - p1->dx * w; } else { *x0 = p1->x + p1->dmx * w; *y0 = p1->y + p1->dmy * w; *x1 = p1->x + p1->dmx * w; *y1 = p1->y + p1->dmy * w; } } static NVGvertex* nvg__roundJoin(NVGvertex* dst, NVGpoint* p0, NVGpoint* p1, float lw, float rw, float lu, float ru, int ncap, float fringe) { int i, n; float dlx0 = p0->dy; float dly0 = -p0->dx; float dlx1 = p1->dy; float dly1 = -p1->dx; NVG_NOTUSED(fringe); if (p1->flags & NVG_PT_LEFT) { float lx0,ly0,lx1,ly1,a0,a1; nvg__chooseBevel(p1->flags & NVG_PR_INNERBEVEL, p0, p1, lw, &lx0,&ly0, &lx1,&ly1); a0 = atan2f(-dly0, -dlx0); a1 = atan2f(-dly1, -dlx1); if (a1 > a0) a1 -= NVG_PI*2; nvg__vset(dst, lx0, ly0, lu,1); dst++; nvg__vset(dst, p1->x - dlx0*rw, p1->y - dly0*rw, ru,1); dst++; n = nvg__clampi((int)ceilf(((a0 - a1) / NVG_PI) * ncap), 2, ncap); for (i = 0; i < n; i++) { float u = i/(float)(n-1); float a = a0 + u*(a1-a0); float rx = p1->x + cosf(a) * rw; float ry = p1->y + sinf(a) * rw; nvg__vset(dst, p1->x, p1->y, 0.5f,1); dst++; nvg__vset(dst, rx, ry, ru,1); dst++; } nvg__vset(dst, lx1, ly1, lu,1); dst++; nvg__vset(dst, p1->x - dlx1*rw, p1->y - dly1*rw, ru,1); dst++; } else { float rx0,ry0,rx1,ry1,a0,a1; nvg__chooseBevel(p1->flags & NVG_PR_INNERBEVEL, p0, p1, -rw, &rx0,&ry0, &rx1,&ry1); a0 = atan2f(dly0, dlx0); a1 = atan2f(dly1, dlx1); if (a1 < a0) a1 += NVG_PI*2; nvg__vset(dst, p1->x + dlx0*rw, p1->y + dly0*rw, lu,1); dst++; nvg__vset(dst, rx0, ry0, ru,1); dst++; n = nvg__clampi((int)ceilf(((a1 - a0) / NVG_PI) * ncap), 2, ncap); for (i = 0; i < n; i++) { float u = i/(float)(n-1); float a = a0 + u*(a1-a0); float lx = p1->x + cosf(a) * lw; float ly = p1->y + sinf(a) * lw; nvg__vset(dst, lx, ly, lu,1); dst++; nvg__vset(dst, p1->x, p1->y, 0.5f,1); dst++; } nvg__vset(dst, p1->x + dlx1*rw, p1->y + dly1*rw, lu,1); dst++; nvg__vset(dst, rx1, ry1, ru,1); dst++; } return dst; } static NVGvertex* nvg__bevelJoin(NVGvertex* dst, NVGpoint* p0, NVGpoint* p1, float lw, float rw, float lu, float ru, float fringe) { float rx0,ry0,rx1,ry1; float lx0,ly0,lx1,ly1; float dlx0 = p0->dy; float dly0 = -p0->dx; float dlx1 = p1->dy; float dly1 = -p1->dx; NVG_NOTUSED(fringe); if (p1->flags & NVG_PT_LEFT) { nvg__chooseBevel(p1->flags & NVG_PR_INNERBEVEL, p0, p1, lw, &lx0,&ly0, &lx1,&ly1); nvg__vset(dst, lx0, ly0, lu,1); dst++; nvg__vset(dst, p1->x - dlx0*rw, p1->y - dly0*rw, ru,1); dst++; if (p1->flags & NVG_PT_BEVEL) { nvg__vset(dst, lx0, ly0, lu,1); dst++; nvg__vset(dst, p1->x - dlx0*rw, p1->y - dly0*rw, ru,1); dst++; nvg__vset(dst, lx1, ly1, lu,1); dst++; nvg__vset(dst, p1->x - dlx1*rw, p1->y - dly1*rw, ru,1); dst++; } else { rx0 = p1->x - p1->dmx * rw; ry0 = p1->y - p1->dmy * rw; nvg__vset(dst, p1->x, p1->y, 0.5f,1); dst++; nvg__vset(dst, p1->x - dlx0*rw, p1->y - dly0*rw, ru,1); dst++; nvg__vset(dst, rx0, ry0, ru,1); dst++; nvg__vset(dst, rx0, ry0, ru,1); dst++; nvg__vset(dst, p1->x, p1->y, 0.5f,1); dst++; nvg__vset(dst, p1->x - dlx1*rw, p1->y - dly1*rw, ru,1); dst++; } nvg__vset(dst, lx1, ly1, lu,1); dst++; nvg__vset(dst, p1->x - dlx1*rw, p1->y - dly1*rw, ru,1); dst++; } else { nvg__chooseBevel(p1->flags & NVG_PR_INNERBEVEL, p0, p1, -rw, &rx0,&ry0, &rx1,&ry1); nvg__vset(dst, p1->x + dlx0*lw, p1->y + dly0*lw, lu,1); dst++; nvg__vset(dst, rx0, ry0, ru,1); dst++; if (p1->flags & NVG_PT_BEVEL) { nvg__vset(dst, p1->x + dlx0*lw, p1->y + dly0*lw, lu,1); dst++; nvg__vset(dst, rx0, ry0, ru,1); dst++; nvg__vset(dst, p1->x + dlx1*lw, p1->y + dly1*lw, lu,1); dst++; nvg__vset(dst, rx1, ry1, ru,1); dst++; } else { lx0 = p1->x + p1->dmx * lw; ly0 = p1->y + p1->dmy * lw; nvg__vset(dst, p1->x + dlx0*lw, p1->y + dly0*lw, lu,1); dst++; nvg__vset(dst, p1->x, p1->y, 0.5f,1); dst++; nvg__vset(dst, lx0, ly0, lu,1); dst++; nvg__vset(dst, lx0, ly0, lu,1); dst++; nvg__vset(dst, p1->x + dlx1*lw, p1->y + dly1*lw, lu,1); dst++; nvg__vset(dst, p1->x, p1->y, 0.5f,1); dst++; } nvg__vset(dst, p1->x + dlx1*lw, p1->y + dly1*lw, lu,1); dst++; nvg__vset(dst, rx1, ry1, ru,1); dst++; } return dst; } static NVGvertex* nvg__buttCapStart(NVGvertex* dst, NVGpoint* p, float dx, float dy, float w, float d, float aa, float u0, float u1) { float px = p->x - dx*d; float py = p->y - dy*d; float dlx = dy; float dly = -dx; nvg__vset(dst, px + dlx*w - dx*aa, py + dly*w - dy*aa, u0,0); dst++; nvg__vset(dst, px - dlx*w - dx*aa, py - dly*w - dy*aa, u1,0); dst++; nvg__vset(dst, px + dlx*w, py + dly*w, u0,1); dst++; nvg__vset(dst, px - dlx*w, py - dly*w, u1,1); dst++; return dst; } static NVGvertex* nvg__buttCapEnd(NVGvertex* dst, NVGpoint* p, float dx, float dy, float w, float d, float aa, float u0, float u1) { float px = p->x + dx*d; float py = p->y + dy*d; float dlx = dy; float dly = -dx; nvg__vset(dst, px + dlx*w, py + dly*w, u0,1); dst++; nvg__vset(dst, px - dlx*w, py - dly*w, u1,1); dst++; nvg__vset(dst, px + dlx*w + dx*aa, py + dly*w + dy*aa, u0,0); dst++; nvg__vset(dst, px - dlx*w + dx*aa, py - dly*w + dy*aa, u1,0); dst++; return dst; } static NVGvertex* nvg__roundCapStart(NVGvertex* dst, NVGpoint* p, float dx, float dy, float w, int ncap, float aa, float u0, float u1) { int i; float px = p->x; float py = p->y; float dlx = dy; float dly = -dx; NVG_NOTUSED(aa); for (i = 0; i < ncap; i++) { float a = i/(float)(ncap-1)*NVG_PI; float ax = cosf(a) * w, ay = sinf(a) * w; nvg__vset(dst, px - dlx*ax - dx*ay, py - dly*ax - dy*ay, u0,1); dst++; nvg__vset(dst, px, py, 0.5f,1); dst++; } nvg__vset(dst, px + dlx*w, py + dly*w, u0,1); dst++; nvg__vset(dst, px - dlx*w, py - dly*w, u1,1); dst++; return dst; } static NVGvertex* nvg__roundCapEnd(NVGvertex* dst, NVGpoint* p, float dx, float dy, float w, int ncap, float aa, float u0, float u1) { int i; float px = p->x; float py = p->y; float dlx = dy; float dly = -dx; NVG_NOTUSED(aa); nvg__vset(dst, px + dlx*w, py + dly*w, u0,1); dst++; nvg__vset(dst, px - dlx*w, py - dly*w, u1,1); dst++; for (i = 0; i < ncap; i++) { float a = i/(float)(ncap-1)*NVG_PI; float ax = cosf(a) * w, ay = sinf(a) * w; nvg__vset(dst, px, py, 0.5f,1); dst++; nvg__vset(dst, px - dlx*ax + dx*ay, py - dly*ax + dy*ay, u0,1); dst++; } return dst; } static void nvg__calculateJoins(NVGcontext* ctx, float w, int lineJoin, float miterLimit) { NVGpathCache* cache = ctx->cache; int i, j; float iw = 0.0f; if (w > 0.0f) iw = 1.0f / w; // Calculate which joins needs extra vertices to append, and gather vertex count. for (i = 0; i < cache->npaths; i++) { NVGpath* path = &cache->paths[i]; NVGpoint* pts = &cache->points[path->first]; NVGpoint* p0 = &pts[path->count-1]; NVGpoint* p1 = &pts[0]; int nleft = 0; path->nbevel = 0; for (j = 0; j < path->count; j++) { float dlx0, dly0, dlx1, dly1, dmr2, cross, limit; dlx0 = p0->dy; dly0 = -p0->dx; dlx1 = p1->dy; dly1 = -p1->dx; // Calculate extrusions p1->dmx = (dlx0 + dlx1) * 0.5f; p1->dmy = (dly0 + dly1) * 0.5f; dmr2 = p1->dmx*p1->dmx + p1->dmy*p1->dmy; if (dmr2 > 0.000001f) { float scale = 1.0f / dmr2; if (scale > 600.0f) { scale = 600.0f; } p1->dmx *= scale; p1->dmy *= scale; } // Clear flags, but keep the corner. p1->flags = (p1->flags & NVG_PT_CORNER) ? NVG_PT_CORNER : 0; // Keep track of left turns. cross = p1->dx * p0->dy - p0->dx * p1->dy; if (cross > 0.0f) { nleft++; p1->flags |= NVG_PT_LEFT; } // Calculate if we should use bevel or miter for inner join. limit = nvg__maxf(1.01f, nvg__minf(p0->len, p1->len) * iw); if ((dmr2 * limit*limit) < 1.0f) p1->flags |= NVG_PR_INNERBEVEL; // Check to see if the corner needs to be beveled. if (p1->flags & NVG_PT_CORNER) { if ((dmr2 * miterLimit*miterLimit) < 1.0f || lineJoin == NVG_BEVEL || lineJoin == NVG_ROUND) { p1->flags |= NVG_PT_BEVEL; } } if ((p1->flags & (NVG_PT_BEVEL | NVG_PR_INNERBEVEL)) != 0) path->nbevel++; p0 = p1++; } path->convex = (nleft == path->count) ? 1 : 0; } } static int nvg__expandStroke(NVGcontext* ctx, float w, float fringe, int lineCap, int lineJoin, float miterLimit) { NVGpathCache* cache = ctx->cache; NVGvertex* verts; NVGvertex* dst; int cverts, i, j; float aa = fringe;//ctx->fringeWidth; float u0 = 0.0f, u1 = 1.0f; int ncap = nvg__curveDivs(w, NVG_PI, ctx->tessTol); // Calculate divisions per half circle. w += aa * 0.5f; // Disable the gradient used for antialiasing when antialiasing is not used. if (aa == 0.0f) { u0 = 0.5f; u1 = 0.5f; } nvg__calculateJoins(ctx, w, lineJoin, miterLimit); // Calculate max vertex usage. cverts = 0; for (i = 0; i < cache->npaths; i++) { NVGpath* path = &cache->paths[i]; int loop = (path->closed == 0) ? 0 : 1; if (lineJoin == NVG_ROUND) cverts += (path->count + path->nbevel*(ncap+2) + 1) * 2; // plus one for loop else cverts += (path->count + path->nbevel*5 + 1) * 2; // plus one for loop if (loop == 0) { // space for caps if (lineCap == NVG_ROUND) { cverts += (ncap*2 + 2)*2; } else { cverts += (3+3)*2; } } } verts = nvg__allocTempVerts(ctx, cverts); if (verts == NULL) return 0; for (i = 0; i < cache->npaths; i++) { NVGpath* path = &cache->paths[i]; NVGpoint* pts = &cache->points[path->first]; NVGpoint* p0; NVGpoint* p1; int s, e, loop; float dx, dy; path->fill = 0; path->nfill = 0; // Calculate fringe or stroke loop = (path->closed == 0) ? 0 : 1; dst = verts; path->stroke = dst; if (loop) { // Looping p0 = &pts[path->count-1]; p1 = &pts[0]; s = 0; e = path->count; } else { // Add cap p0 = &pts[0]; p1 = &pts[1]; s = 1; e = path->count-1; } if (loop == 0) { // Add cap dx = p1->x - p0->x; dy = p1->y - p0->y; nvg__normalize(&dx, &dy); if (lineCap == NVG_BUTT) dst = nvg__buttCapStart(dst, p0, dx, dy, w, -aa*0.5f, aa, u0, u1); else if (lineCap == NVG_BUTT || lineCap == NVG_SQUARE) dst = nvg__buttCapStart(dst, p0, dx, dy, w, w-aa, aa, u0, u1); else if (lineCap == NVG_ROUND) dst = nvg__roundCapStart(dst, p0, dx, dy, w, ncap, aa, u0, u1); } for (j = s; j < e; ++j) { if ((p1->flags & (NVG_PT_BEVEL | NVG_PR_INNERBEVEL)) != 0) { if (lineJoin == NVG_ROUND) { dst = nvg__roundJoin(dst, p0, p1, w, w, u0, u1, ncap, aa); } else { dst = nvg__bevelJoin(dst, p0, p1, w, w, u0, u1, aa); } } else { nvg__vset(dst, p1->x + (p1->dmx * w), p1->y + (p1->dmy * w), u0,1); dst++; nvg__vset(dst, p1->x - (p1->dmx * w), p1->y - (p1->dmy * w), u1,1); dst++; } p0 = p1++; } if (loop) { // Loop it nvg__vset(dst, verts[0].x, verts[0].y, u0,1); dst++; nvg__vset(dst, verts[1].x, verts[1].y, u1,1); dst++; } else { // Add cap dx = p1->x - p0->x; dy = p1->y - p0->y; nvg__normalize(&dx, &dy); if (lineCap == NVG_BUTT) dst = nvg__buttCapEnd(dst, p1, dx, dy, w, -aa*0.5f, aa, u0, u1); else if (lineCap == NVG_BUTT || lineCap == NVG_SQUARE) dst = nvg__buttCapEnd(dst, p1, dx, dy, w, w-aa, aa, u0, u1); else if (lineCap == NVG_ROUND) dst = nvg__roundCapEnd(dst, p1, dx, dy, w, ncap, aa, u0, u1); } path->nstroke = (int)(dst - verts); verts = dst; } return 1; } static int nvg__expandFill(NVGcontext* ctx, float w, int lineJoin, float miterLimit) { NVGpathCache* cache = ctx->cache; NVGvertex* verts; NVGvertex* dst; int cverts, convex, i, j; float aa = ctx->fringeWidth; int fringe = w > 0.0f; nvg__calculateJoins(ctx, w, lineJoin, miterLimit); // Calculate max vertex usage. cverts = 0; for (i = 0; i < cache->npaths; i++) { NVGpath* path = &cache->paths[i]; cverts += path->count + path->nbevel + 1; if (fringe) cverts += (path->count + path->nbevel*5 + 1) * 2; // plus one for loop } verts = nvg__allocTempVerts(ctx, cverts); if (verts == NULL) return 0; convex = cache->npaths == 1 && cache->paths[0].convex; for (i = 0; i < cache->npaths; i++) { NVGpath* path = &cache->paths[i]; NVGpoint* pts = &cache->points[path->first]; NVGpoint* p0; NVGpoint* p1; float rw, lw, woff; float ru, lu; // Calculate shape vertices. woff = 0.5f*aa; dst = verts; path->fill = dst; if (fringe) { // Looping p0 = &pts[path->count-1]; p1 = &pts[0]; for (j = 0; j < path->count; ++j) { if (p1->flags & NVG_PT_BEVEL) { float dlx0 = p0->dy; float dly0 = -p0->dx; float dlx1 = p1->dy; float dly1 = -p1->dx; if (p1->flags & NVG_PT_LEFT) { float lx = p1->x + p1->dmx * woff; float ly = p1->y + p1->dmy * woff; nvg__vset(dst, lx, ly, 0.5f,1); dst++; } else { float lx0 = p1->x + dlx0 * woff; float ly0 = p1->y + dly0 * woff; float lx1 = p1->x + dlx1 * woff; float ly1 = p1->y + dly1 * woff; nvg__vset(dst, lx0, ly0, 0.5f,1); dst++; nvg__vset(dst, lx1, ly1, 0.5f,1); dst++; } } else { nvg__vset(dst, p1->x + (p1->dmx * woff), p1->y + (p1->dmy * woff), 0.5f,1); dst++; } p0 = p1++; } } else { for (j = 0; j < path->count; ++j) { nvg__vset(dst, pts[j].x, pts[j].y, 0.5f,1); dst++; } } path->nfill = (int)(dst - verts); verts = dst; // Calculate fringe if (fringe) { lw = w + woff; rw = w - woff; lu = 0; ru = 1; dst = verts; path->stroke = dst; // Create only half a fringe for convex shapes so that // the shape can be rendered without stenciling. if (convex) { lw = woff; // This should generate the same vertex as fill inset above. lu = 0.5f; // Set outline fade at middle. } // Looping p0 = &pts[path->count-1]; p1 = &pts[0]; for (j = 0; j < path->count; ++j) { if ((p1->flags & (NVG_PT_BEVEL | NVG_PR_INNERBEVEL)) != 0) { dst = nvg__bevelJoin(dst, p0, p1, lw, rw, lu, ru, ctx->fringeWidth); } else { nvg__vset(dst, p1->x + (p1->dmx * lw), p1->y + (p1->dmy * lw), lu,1); dst++; nvg__vset(dst, p1->x - (p1->dmx * rw), p1->y - (p1->dmy * rw), ru,1); dst++; } p0 = p1++; } // Loop it nvg__vset(dst, verts[0].x, verts[0].y, lu,1); dst++; nvg__vset(dst, verts[1].x, verts[1].y, ru,1); dst++; path->nstroke = (int)(dst - verts); verts = dst; } else { path->stroke = NULL; path->nstroke = 0; } } return 1; } // Draw void nvgBeginPath(NVGcontext* ctx) { ctx->ncommands = 0; nvg__clearPathCache(ctx); } void nvgMoveTo(NVGcontext* ctx, float x, float y) { float vals[] = { NVG_MOVETO, x, y }; nvg__appendCommands(ctx, vals, NVG_COUNTOF(vals)); } void nvgLineTo(NVGcontext* ctx, float x, float y) { float vals[] = { NVG_LINETO, x, y }; nvg__appendCommands(ctx, vals, NVG_COUNTOF(vals)); } void nvgBezierTo(NVGcontext* ctx, float c1x, float c1y, float c2x, float c2y, float x, float y) { float vals[] = { NVG_BEZIERTO, c1x, c1y, c2x, c2y, x, y }; nvg__appendCommands(ctx, vals, NVG_COUNTOF(vals)); } void nvgQuadTo(NVGcontext* ctx, float cx, float cy, float x, float y) { float x0 = ctx->commandx; float y0 = ctx->commandy; float vals[] = { NVG_BEZIERTO, x0 + 2.0f/3.0f*(cx - x0), y0 + 2.0f/3.0f*(cy - y0), x + 2.0f/3.0f*(cx - x), y + 2.0f/3.0f*(cy - y), x, y }; nvg__appendCommands(ctx, vals, NVG_COUNTOF(vals)); } void nvgArcTo(NVGcontext* ctx, float x1, float y1, float x2, float y2, float radius) { float x0 = ctx->commandx; float y0 = ctx->commandy; float dx0,dy0, dx1,dy1, a, d, cx,cy, a0,a1; int dir; if (ctx->ncommands == 0) { return; } // Handle degenerate cases. if (nvg__ptEquals(x0,y0, x1,y1, ctx->distTol) || nvg__ptEquals(x1,y1, x2,y2, ctx->distTol) || nvg__distPtSeg(x1,y1, x0,y0, x2,y2) < ctx->distTol*ctx->distTol || radius < ctx->distTol) { nvgLineTo(ctx, x1,y1); return; } // Calculate tangential circle to lines (x0,y0)-(x1,y1) and (x1,y1)-(x2,y2). dx0 = x0-x1; dy0 = y0-y1; dx1 = x2-x1; dy1 = y2-y1; nvg__normalize(&dx0,&dy0); nvg__normalize(&dx1,&dy1); a = nvg__acosf(dx0*dx1 + dy0*dy1); d = radius / nvg__tanf(a/2.0f); // printf("a=%f° d=%f\n", a/NVG_PI*180.0f, d); if (d > 10000.0f) { nvgLineTo(ctx, x1,y1); return; } if (nvg__cross(dx0,dy0, dx1,dy1) > 0.0f) { cx = x1 + dx0*d + dy0*radius; cy = y1 + dy0*d + -dx0*radius; a0 = nvg__atan2f(dx0, -dy0); a1 = nvg__atan2f(-dx1, dy1); dir = NVG_CW; // printf("CW c=(%f, %f) a0=%f° a1=%f°\n", cx, cy, a0/NVG_PI*180.0f, a1/NVG_PI*180.0f); } else { cx = x1 + dx0*d + -dy0*radius; cy = y1 + dy0*d + dx0*radius; a0 = nvg__atan2f(-dx0, dy0); a1 = nvg__atan2f(dx1, -dy1); dir = NVG_CCW; // printf("CCW c=(%f, %f) a0=%f° a1=%f°\n", cx, cy, a0/NVG_PI*180.0f, a1/NVG_PI*180.0f); } nvgArc(ctx, cx, cy, radius, a0, a1, dir); } void nvgClosePath(NVGcontext* ctx) { float vals[] = { NVG_CLOSE }; nvg__appendCommands(ctx, vals, NVG_COUNTOF(vals)); } void nvgPathWinding(NVGcontext* ctx, int dir) { float vals[] = { NVG_WINDING, (float)dir }; nvg__appendCommands(ctx, vals, NVG_COUNTOF(vals)); } void nvgBarc(NVGcontext* ctx, float cx, float cy, float r, float a0, float a1, int dir, int join) { float a = 0, da = 0, hda = 0, kappa = 0; float dx = 0, dy = 0, x = 0, y = 0, tanx = 0, tany = 0; float px = 0, py = 0, ptanx = 0, ptany = 0; float vals[3 + 5*7 + 100]; int i, ndivs, nvals; int move = join && ctx->ncommands > 0 ? NVG_LINETO : NVG_MOVETO; // Clamp angles da = a1 - a0; if (dir == NVG_CW) { if (nvg__absf(da) >= NVG_PI*2) { da = NVG_PI*2; } else { while (da < 0.0f) da += NVG_PI*2; } } else { if (nvg__absf(da) >= NVG_PI*2) { da = -NVG_PI*2; } else { while (da > 0.0f) da -= NVG_PI*2; } } // Split arc into max 90 degree segments. ndivs = nvg__maxi(1, nvg__mini((int)(nvg__absf(da) / (NVG_PI*0.5f) + 0.5f), 5)); hda = (da / (float)ndivs) / 2.0f; kappa = nvg__absf(4.0f / 3.0f * (1.0f - nvg__cosf(hda)) / nvg__sinf(hda)); if (dir == NVG_CCW) kappa = -kappa; nvals = 0; for (i = 0; i <= ndivs; i++) { a = a0 + da * (i/(float)ndivs); dx = nvg__cosf(a); dy = nvg__sinf(a); x = cx + dx*r; y = cy + dy*r; tanx = -dy*r*kappa; tany = dx*r*kappa; if (i == 0) { vals[nvals++] = (float)move; vals[nvals++] = x; vals[nvals++] = y; } else { vals[nvals++] = NVG_BEZIERTO; vals[nvals++] = px+ptanx; vals[nvals++] = py+ptany; vals[nvals++] = x-tanx; vals[nvals++] = y-tany; vals[nvals++] = x; vals[nvals++] = y; } px = x; py = y; ptanx = tanx; ptany = tany; } nvg__appendCommands(ctx, vals, nvals); } void nvgArc(NVGcontext* ctx, float cx, float cy, float r, float a0, float a1, int dir) { nvgBarc(ctx, cx, cy, r, a0, a1, dir, 1); } void nvgRect(NVGcontext* ctx, float x, float y, float w, float h) { float vals[] = { NVG_MOVETO, x,y, NVG_LINETO, x,y+h, NVG_LINETO, x+w,y+h, NVG_LINETO, x+w,y, NVG_CLOSE }; nvg__appendCommands(ctx, vals, NVG_COUNTOF(vals)); } void nvgRoundedRect(NVGcontext* ctx, float x, float y, float w, float h, float r) { nvgRoundedRectVarying(ctx, x, y, w, h, r, r, r, r); } void nvgRoundedRectVarying(NVGcontext* ctx, float x, float y, float w, float h, float radTopLeft, float radTopRight, float radBottomRight, float radBottomLeft) { if(radTopLeft < 0.1f && radTopRight < 0.1f && radBottomRight < 0.1f && radBottomLeft < 0.1f) { nvgRect(ctx, x, y, w, h); return; } else { float halfw = nvg__absf(w)*0.5f; float halfh = nvg__absf(h)*0.5f; float rxBL = nvg__minf(radBottomLeft, halfw) * nvg__signf(w), ryBL = nvg__minf(radBottomLeft, halfh) * nvg__signf(h); float rxBR = nvg__minf(radBottomRight, halfw) * nvg__signf(w), ryBR = nvg__minf(radBottomRight, halfh) * nvg__signf(h); float rxTR = nvg__minf(radTopRight, halfw) * nvg__signf(w), ryTR = nvg__minf(radTopRight, halfh) * nvg__signf(h); float rxTL = nvg__minf(radTopLeft, halfw) * nvg__signf(w), ryTL = nvg__minf(radTopLeft, halfh) * nvg__signf(h); float vals[] = { NVG_MOVETO, x, y + ryTL, NVG_LINETO, x, y + h - ryBL, NVG_BEZIERTO, x, y + h - ryBL*(1 - NVG_KAPPA90), x + rxBL*(1 - NVG_KAPPA90), y + h, x + rxBL, y + h, NVG_LINETO, x + w - rxBR, y + h, NVG_BEZIERTO, x + w - rxBR*(1 - NVG_KAPPA90), y + h, x + w, y + h - ryBR*(1 - NVG_KAPPA90), x + w, y + h - ryBR, NVG_LINETO, x + w, y + ryTR, NVG_BEZIERTO, x + w, y + ryTR*(1 - NVG_KAPPA90), x + w - rxTR*(1 - NVG_KAPPA90), y, x + w - rxTR, y, NVG_LINETO, x + rxTL, y, NVG_BEZIERTO, x + rxTL*(1 - NVG_KAPPA90), y, x, y + ryTL*(1 - NVG_KAPPA90), x, y + ryTL, NVG_CLOSE }; nvg__appendCommands(ctx, vals, NVG_COUNTOF(vals)); } } void nvgEllipse(NVGcontext* ctx, float cx, float cy, float rx, float ry) { float vals[] = { NVG_MOVETO, cx-rx, cy, NVG_BEZIERTO, cx-rx, cy+ry*NVG_KAPPA90, cx-rx*NVG_KAPPA90, cy+ry, cx, cy+ry, NVG_BEZIERTO, cx+rx*NVG_KAPPA90, cy+ry, cx+rx, cy+ry*NVG_KAPPA90, cx+rx, cy, NVG_BEZIERTO, cx+rx, cy-ry*NVG_KAPPA90, cx+rx*NVG_KAPPA90, cy-ry, cx, cy-ry, NVG_BEZIERTO, cx-rx*NVG_KAPPA90, cy-ry, cx-rx, cy-ry*NVG_KAPPA90, cx-rx, cy, NVG_CLOSE }; nvg__appendCommands(ctx, vals, NVG_COUNTOF(vals)); } void nvgCircle(NVGcontext* ctx, float cx, float cy, float r) { nvgEllipse(ctx, cx,cy, r,r); } void nvgDebugDumpPathCache(NVGcontext* ctx) { const NVGpath* path; int i, j; printf("Dumping %d cached paths\n", ctx->cache->npaths); for (i = 0; i < ctx->cache->npaths; i++) { path = &ctx->cache->paths[i]; printf(" - Path %d\n", i); if (path->nfill) { printf(" - fill: %d\n", path->nfill); for (j = 0; j < path->nfill; j++) printf("%f\t%f\n", path->fill[j].x, path->fill[j].y); } if (path->nstroke) { printf(" - stroke: %d\n", path->nstroke); for (j = 0; j < path->nstroke; j++) printf("%f\t%f\n", path->stroke[j].x, path->stroke[j].y); } } } void nvgFill(NVGcontext* ctx) { NVGstate* state = nvg__getState(ctx); const NVGpath* path; NVGpaint fillPaint = state->fill; int i; nvg__flattenPaths(ctx); if (ctx->params.edgeAntiAlias && state->shapeAntiAlias) nvg__expandFill(ctx, ctx->fringeWidth, NVG_MITER, 2.4f); else nvg__expandFill(ctx, 0.0f, NVG_MITER, 2.4f); // Apply global alpha fillPaint.innerColor.a *= state->alpha; fillPaint.outerColor.a *= state->alpha; ctx->params.renderFill(ctx->params.userPtr, &fillPaint, state->compositeOperation, &state->scissor, ctx->fringeWidth, ctx->cache->bounds, ctx->cache->paths, ctx->cache->npaths); // Count triangles for (i = 0; i < ctx->cache->npaths; i++) { path = &ctx->cache->paths[i]; ctx->fillTriCount += path->nfill-2; ctx->fillTriCount += path->nstroke-2; ctx->drawCallCount += 2; } } void nvgStroke(NVGcontext* ctx) { NVGstate* state = nvg__getState(ctx); float scale = nvg__getAverageScale(state->xform); float strokeWidth = nvg__clampf(state->strokeWidth * scale, 0.0f, 200.0f); NVGpaint strokePaint = state->stroke; const NVGpath* path; int i; if (strokeWidth < ctx->fringeWidth) { // If the stroke width is less than pixel size, use alpha to emulate coverage. // Since coverage is area, scale by alpha*alpha. float alpha = nvg__clampf(strokeWidth / ctx->fringeWidth, 0.0f, 1.0f); strokePaint.innerColor.a *= alpha*alpha; strokePaint.outerColor.a *= alpha*alpha; strokeWidth = ctx->fringeWidth; } // Apply global alpha strokePaint.innerColor.a *= state->alpha; strokePaint.outerColor.a *= state->alpha; nvg__flattenPaths(ctx); if (ctx->params.edgeAntiAlias && state->shapeAntiAlias) nvg__expandStroke(ctx, strokeWidth*0.5f, ctx->fringeWidth, state->lineCap, state->lineJoin, state->miterLimit); else nvg__expandStroke(ctx, strokeWidth*0.5f, 0.0f, state->lineCap, state->lineJoin, state->miterLimit); ctx->params.renderStroke(ctx->params.userPtr, &strokePaint, state->compositeOperation, &state->scissor, ctx->fringeWidth, strokeWidth, ctx->cache->paths, ctx->cache->npaths); // Count triangles for (i = 0; i < ctx->cache->npaths; i++) { path = &ctx->cache->paths[i]; ctx->strokeTriCount += path->nstroke-2; ctx->drawCallCount++; } } // Add fonts int nvgCreateFont(NVGcontext* ctx, const char* name, const char* filename) { return fonsAddFont(ctx->fs, name, filename, 0); } int nvgCreateFontAtIndex(NVGcontext* ctx, const char* name, const char* filename, const int fontIndex) { return fonsAddFont(ctx->fs, name, filename, fontIndex); } int nvgCreateFontMem(NVGcontext* ctx, const char* name, unsigned char* data, int ndata, int freeData) { return fonsAddFontMem(ctx->fs, name, data, ndata, freeData, 0); } int nvgCreateFontMemAtIndex(NVGcontext* ctx, const char* name, unsigned char* data, int ndata, int freeData, const int fontIndex) { return fonsAddFontMem(ctx->fs, name, data, ndata, freeData, fontIndex); } int nvgFindFont(NVGcontext* ctx, const char* name) { if (name == NULL) return -1; return fonsGetFontByName(ctx->fs, name); } int nvgAddFallbackFontId(NVGcontext* ctx, int baseFont, int fallbackFont) { if(baseFont == -1 || fallbackFont == -1) return 0; return fonsAddFallbackFont(ctx->fs, baseFont, fallbackFont); } int nvgAddFallbackFont(NVGcontext* ctx, const char* baseFont, const char* fallbackFont) { return nvgAddFallbackFontId(ctx, nvgFindFont(ctx, baseFont), nvgFindFont(ctx, fallbackFont)); } void nvgResetFallbackFontsId(NVGcontext* ctx, int baseFont) { fonsResetFallbackFont(ctx->fs, baseFont); } void nvgResetFallbackFonts(NVGcontext* ctx, const char* baseFont) { nvgResetFallbackFontsId(ctx, nvgFindFont(ctx, baseFont)); } // State setting void nvgFontSize(NVGcontext* ctx, float size) { NVGstate* state = nvg__getState(ctx); state->fontSize = size; } void nvgFontBlur(NVGcontext* ctx, float blur) { NVGstate* state = nvg__getState(ctx); state->fontBlur = blur; } void nvgTextLetterSpacing(NVGcontext* ctx, float spacing) { NVGstate* state = nvg__getState(ctx); state->letterSpacing = spacing; } void nvgTextLineHeight(NVGcontext* ctx, float lineHeight) { NVGstate* state = nvg__getState(ctx); state->lineHeight = lineHeight; } void nvgTextAlign(NVGcontext* ctx, int align) { NVGstate* state = nvg__getState(ctx); state->textAlign = align; } void nvgFontFaceId(NVGcontext* ctx, int font) { NVGstate* state = nvg__getState(ctx); state->fontId = font; } void nvgFontFace(NVGcontext* ctx, const char* font) { NVGstate* state = nvg__getState(ctx); state->fontId = fonsGetFontByName(ctx->fs, font); } static float nvg__quantize(float a, float d) { return ((int)(a / d + 0.5f)) * d; } static float nvg__getFontScale(NVGstate* state) { return nvg__minf(nvg__quantize(nvg__getAverageScale(state->xform), 0.01f), 4.0f); } static void nvg__flushTextTexture(NVGcontext* ctx) { int dirty[4]; if (fonsValidateTexture(ctx->fs, dirty)) { int fontImage = ctx->fontImages[ctx->fontImageIdx]; // Update texture if (fontImage != 0) { int iw, ih; const unsigned char* data = fonsGetTextureData(ctx->fs, &iw, &ih); int x = dirty[0]; int y = dirty[1]; int w = dirty[2] - dirty[0]; int h = dirty[3] - dirty[1]; ctx->params.renderUpdateTexture(ctx->params.userPtr, fontImage, x,y, w,h, data); } } } static int nvg__allocTextAtlas(NVGcontext* ctx) { int iw, ih; nvg__flushTextTexture(ctx); if (ctx->fontImageIdx >= NVG_MAX_FONTIMAGES-1) return 0; // if next fontImage already have a texture if (ctx->fontImages[ctx->fontImageIdx+1] != 0) nvgImageSize(ctx, ctx->fontImages[ctx->fontImageIdx+1], &iw, &ih); else { // calculate the new font image size and create it. nvgImageSize(ctx, ctx->fontImages[ctx->fontImageIdx], &iw, &ih); if (iw > ih) ih *= 2; else iw *= 2; if (iw > NVG_MAX_FONTIMAGE_SIZE || ih > NVG_MAX_FONTIMAGE_SIZE) iw = ih = NVG_MAX_FONTIMAGE_SIZE; ctx->fontImages[ctx->fontImageIdx+1] = ctx->params.renderCreateTexture(ctx->params.userPtr, NVG_TEXTURE_ALPHA, iw, ih, 0, NULL); } ++ctx->fontImageIdx; fonsResetAtlas(ctx->fs, iw, ih); return 1; } static void nvg__renderText(NVGcontext* ctx, NVGvertex* verts, int nverts) { NVGstate* state = nvg__getState(ctx); NVGpaint paint = state->fill; // Render triangles. paint.image = ctx->fontImages[ctx->fontImageIdx]; // Apply global alpha paint.innerColor.a *= state->alpha; paint.outerColor.a *= state->alpha; ctx->params.renderTriangles(ctx->params.userPtr, &paint, state->compositeOperation, &state->scissor, verts, nverts, ctx->fringeWidth); ctx->drawCallCount++; ctx->textTriCount += nverts/3; } static int nvg__isTransformFlipped(const float *xform) { float det = xform[0] * xform[3] - xform[2] * xform[1]; return( det < 0); } float nvgText(NVGcontext* ctx, float x, float y, const char* string, const char* end) { NVGstate* state = nvg__getState(ctx); FONStextIter iter, prevIter; FONSquad q; NVGvertex* verts; float scale = nvg__getFontScale(state) * ctx->devicePxRatio; float invscale = 1.0f / scale; int cverts = 0; int nverts = 0; int isFlipped = nvg__isTransformFlipped(state->xform); if (end == NULL) end = string + strlen(string); if (state->fontId == FONS_INVALID) return x; fonsSetSize(ctx->fs, state->fontSize*scale); fonsSetSpacing(ctx->fs, state->letterSpacing*scale); fonsSetBlur(ctx->fs, state->fontBlur*scale); fonsSetAlign(ctx->fs, state->textAlign); fonsSetFont(ctx->fs, state->fontId); cverts = nvg__maxi(2, (int)(end - string)) * 6; // conservative estimate. verts = nvg__allocTempVerts(ctx, cverts); if (verts == NULL) return x; fonsTextIterInit(ctx->fs, &iter, x*scale, y*scale, string, end, FONS_GLYPH_BITMAP_REQUIRED); prevIter = iter; while (fonsTextIterNext(ctx->fs, &iter, &q)) { float c[4*2]; if (iter.prevGlyphIndex == -1) { // can not retrieve glyph? if (nverts != 0) { nvg__renderText(ctx, verts, nverts); nverts = 0; } if (!nvg__allocTextAtlas(ctx)) break; // no memory :( iter = prevIter; fonsTextIterNext(ctx->fs, &iter, &q); // try again if (iter.prevGlyphIndex == -1) // still can not find glyph? break; } prevIter = iter; if(isFlipped) { float tmp; tmp = q.y0; q.y0 = q.y1; q.y1 = tmp; tmp = q.t0; q.t0 = q.t1; q.t1 = tmp; } // Transform corners. nvgTransformPoint(&c[0],&c[1], state->xform, q.x0*invscale, q.y0*invscale); nvgTransformPoint(&c[2],&c[3], state->xform, q.x1*invscale, q.y0*invscale); nvgTransformPoint(&c[4],&c[5], state->xform, q.x1*invscale, q.y1*invscale); nvgTransformPoint(&c[6],&c[7], state->xform, q.x0*invscale, q.y1*invscale); // Create triangles if (nverts+6 <= cverts) { nvg__vset(&verts[nverts], c[0], c[1], q.s0, q.t0); nverts++; nvg__vset(&verts[nverts], c[4], c[5], q.s1, q.t1); nverts++; nvg__vset(&verts[nverts], c[2], c[3], q.s1, q.t0); nverts++; nvg__vset(&verts[nverts], c[0], c[1], q.s0, q.t0); nverts++; nvg__vset(&verts[nverts], c[6], c[7], q.s0, q.t1); nverts++; nvg__vset(&verts[nverts], c[4], c[5], q.s1, q.t1); nverts++; } } // TODO: add back-end bit to do this just once per frame. nvg__flushTextTexture(ctx); nvg__renderText(ctx, verts, nverts); return iter.nextx / scale; } void nvgTextBox(NVGcontext* ctx, float x, float y, float breakRowWidth, const char* string, const char* end) { NVGstate* state = nvg__getState(ctx); NVGtextRow rows[2]; int nrows = 0, i; int oldAlign = state->textAlign; int haling = state->textAlign & (NVG_ALIGN_LEFT | NVG_ALIGN_CENTER | NVG_ALIGN_RIGHT); int valign = state->textAlign & (NVG_ALIGN_TOP | NVG_ALIGN_MIDDLE | NVG_ALIGN_BOTTOM | NVG_ALIGN_BASELINE); float lineh = 0; if (state->fontId == FONS_INVALID) return; nvgTextMetrics(ctx, NULL, NULL, &lineh); state->textAlign = NVG_ALIGN_LEFT | valign; while ((nrows = nvgTextBreakLines(ctx, string, end, breakRowWidth, rows, 2))) { for (i = 0; i < nrows; i++) { NVGtextRow* row = &rows[i]; if (haling & NVG_ALIGN_LEFT) nvgText(ctx, x, y, row->start, row->end); else if (haling & NVG_ALIGN_CENTER) nvgText(ctx, x + breakRowWidth*0.5f - row->width*0.5f, y, row->start, row->end); else if (haling & NVG_ALIGN_RIGHT) nvgText(ctx, x + breakRowWidth - row->width, y, row->start, row->end); y += lineh * state->lineHeight; } string = rows[nrows-1].next; } state->textAlign = oldAlign; } int nvgTextGlyphPositions(NVGcontext* ctx, float x, float y, const char* string, const char* end, NVGglyphPosition* positions, int maxPositions) { NVGstate* state = nvg__getState(ctx); float scale = nvg__getFontScale(state) * ctx->devicePxRatio; float invscale = 1.0f / scale; FONStextIter iter, prevIter; FONSquad q; int npos = 0; if (state->fontId == FONS_INVALID) return 0; if (end == NULL) end = string + strlen(string); if (string == end) return 0; fonsSetSize(ctx->fs, state->fontSize*scale); fonsSetSpacing(ctx->fs, state->letterSpacing*scale); fonsSetBlur(ctx->fs, state->fontBlur*scale); fonsSetAlign(ctx->fs, state->textAlign); fonsSetFont(ctx->fs, state->fontId); fonsTextIterInit(ctx->fs, &iter, x*scale, y*scale, string, end, FONS_GLYPH_BITMAP_OPTIONAL); prevIter = iter; while (fonsTextIterNext(ctx->fs, &iter, &q)) { if (iter.prevGlyphIndex < 0 && nvg__allocTextAtlas(ctx)) { // can not retrieve glyph? iter = prevIter; fonsTextIterNext(ctx->fs, &iter, &q); // try again } prevIter = iter; positions[npos].str = iter.str; positions[npos].x = iter.x * invscale; positions[npos].minx = nvg__minf(iter.x, q.x0) * invscale; positions[npos].maxx = nvg__maxf(iter.nextx, q.x1) * invscale; npos++; if (npos >= maxPositions) break; } return npos; } enum NVGcodepointType { NVG_SPACE, NVG_NEWLINE, NVG_CHAR, NVG_CJK_CHAR, }; int nvgTextBreakLines(NVGcontext* ctx, const char* string, const char* end, float breakRowWidth, NVGtextRow* rows, int maxRows) { NVGstate* state = nvg__getState(ctx); float scale = nvg__getFontScale(state) * ctx->devicePxRatio; float invscale = 1.0f / scale; FONStextIter iter, prevIter; FONSquad q; int nrows = 0; float rowStartX = 0; float rowWidth = 0; float rowMinX = 0; float rowMaxX = 0; const char* rowStart = NULL; const char* rowEnd = NULL; const char* wordStart = NULL; float wordStartX = 0; float wordMinX = 0; const char* breakEnd = NULL; float breakWidth = 0; float breakMaxX = 0; int type = NVG_SPACE, ptype = NVG_SPACE; unsigned int pcodepoint = 0; if (maxRows == 0) return 0; if (state->fontId == FONS_INVALID) return 0; if (end == NULL) end = string + strlen(string); if (string == end) return 0; fonsSetSize(ctx->fs, state->fontSize*scale); fonsSetSpacing(ctx->fs, state->letterSpacing*scale); fonsSetBlur(ctx->fs, state->fontBlur*scale); fonsSetAlign(ctx->fs, state->textAlign); fonsSetFont(ctx->fs, state->fontId); breakRowWidth *= scale; fonsTextIterInit(ctx->fs, &iter, 0, 0, string, end, FONS_GLYPH_BITMAP_OPTIONAL); prevIter = iter; while (fonsTextIterNext(ctx->fs, &iter, &q)) { if (iter.prevGlyphIndex < 0 && nvg__allocTextAtlas(ctx)) { // can not retrieve glyph? iter = prevIter; fonsTextIterNext(ctx->fs, &iter, &q); // try again } prevIter = iter; switch (iter.codepoint) { case 9: // \t case 11: // \v case 12: // \f case 32: // space case 0x00a0: // NBSP type = NVG_SPACE; break; case 10: // \n type = pcodepoint == 13 ? NVG_SPACE : NVG_NEWLINE; break; case 13: // \r type = pcodepoint == 10 ? NVG_SPACE : NVG_NEWLINE; break; case 0x0085: // NEL type = NVG_NEWLINE; break; default: if ((iter.codepoint >= 0x4E00 && iter.codepoint <= 0x9FFF) || (iter.codepoint >= 0x3000 && iter.codepoint <= 0x30FF) || (iter.codepoint >= 0xFF00 && iter.codepoint <= 0xFFEF) || (iter.codepoint >= 0x1100 && iter.codepoint <= 0x11FF) || (iter.codepoint >= 0x3130 && iter.codepoint <= 0x318F) || (iter.codepoint >= 0xAC00 && iter.codepoint <= 0xD7AF)) type = NVG_CJK_CHAR; else type = NVG_CHAR; break; } if (type == NVG_NEWLINE) { // Always handle new lines. rows[nrows].start = rowStart != NULL ? rowStart : iter.str; rows[nrows].end = rowEnd != NULL ? rowEnd : iter.str; rows[nrows].width = rowWidth * invscale; rows[nrows].minx = rowMinX * invscale; rows[nrows].maxx = rowMaxX * invscale; rows[nrows].next = iter.next; nrows++; if (nrows >= maxRows) return nrows; // Set null break point breakEnd = rowStart; breakWidth = 0.0; breakMaxX = 0.0; // Indicate to skip the white space at the beginning of the row. rowStart = NULL; rowEnd = NULL; rowWidth = 0; rowMinX = rowMaxX = 0; } else { if (rowStart == NULL) { // Skip white space until the beginning of the line if (type == NVG_CHAR || type == NVG_CJK_CHAR) { // The current char is the row so far rowStartX = iter.x; rowStart = iter.str; rowEnd = iter.next; rowWidth = iter.nextx - rowStartX; rowMinX = q.x0 - rowStartX; rowMaxX = q.x1 - rowStartX; wordStart = iter.str; wordStartX = iter.x; wordMinX = q.x0 - rowStartX; // Set null break point breakEnd = rowStart; breakWidth = 0.0; breakMaxX = 0.0; } } else { float nextWidth = iter.nextx - rowStartX; // track last non-white space character if (type == NVG_CHAR || type == NVG_CJK_CHAR) { rowEnd = iter.next; rowWidth = iter.nextx - rowStartX; rowMaxX = q.x1 - rowStartX; } // track last end of a word if (((ptype == NVG_CHAR || ptype == NVG_CJK_CHAR) && type == NVG_SPACE) || type == NVG_CJK_CHAR) { breakEnd = iter.str; breakWidth = rowWidth; breakMaxX = rowMaxX; } // track last beginning of a word if ((ptype == NVG_SPACE && (type == NVG_CHAR || type == NVG_CJK_CHAR)) || type == NVG_CJK_CHAR) { wordStart = iter.str; wordStartX = iter.x; wordMinX = q.x0; } // Break to new line when a character is beyond break width. if ((type == NVG_CHAR || type == NVG_CJK_CHAR) && nextWidth > breakRowWidth) { // The run length is too long, need to break to new line. if (breakEnd == rowStart) { // The current word is longer than the row length, just break it from here. rows[nrows].start = rowStart; rows[nrows].end = iter.str; rows[nrows].width = rowWidth * invscale; rows[nrows].minx = rowMinX * invscale; rows[nrows].maxx = rowMaxX * invscale; rows[nrows].next = iter.str; nrows++; if (nrows >= maxRows) return nrows; rowStartX = iter.x; rowStart = iter.str; rowEnd = iter.next; rowWidth = iter.nextx - rowStartX; rowMinX = q.x0 - rowStartX; rowMaxX = q.x1 - rowStartX; wordStart = iter.str; wordStartX = iter.x; wordMinX = q.x0 - rowStartX; } else { // Break the line from the end of the last word, and start new line from the beginning of the new. rows[nrows].start = rowStart; rows[nrows].end = breakEnd; rows[nrows].width = breakWidth * invscale; rows[nrows].minx = rowMinX * invscale; rows[nrows].maxx = breakMaxX * invscale; rows[nrows].next = wordStart; nrows++; if (nrows >= maxRows) return nrows; // Update row rowStartX = wordStartX; rowStart = wordStart; rowEnd = iter.next; rowWidth = iter.nextx - rowStartX; rowMinX = wordMinX - rowStartX; rowMaxX = q.x1 - rowStartX; } // Set null break point breakEnd = rowStart; breakWidth = 0.0; breakMaxX = 0.0; } } } pcodepoint = iter.codepoint; ptype = type; } // Break the line from the end of the last word, and start new line from the beginning of the new. if (rowStart != NULL) { rows[nrows].start = rowStart; rows[nrows].end = rowEnd; rows[nrows].width = rowWidth * invscale; rows[nrows].minx = rowMinX * invscale; rows[nrows].maxx = rowMaxX * invscale; rows[nrows].next = end; nrows++; } return nrows; } float nvgTextBounds(NVGcontext* ctx, float x, float y, const char* string, const char* end, float* bounds) { NVGstate* state = nvg__getState(ctx); float scale = nvg__getFontScale(state) * ctx->devicePxRatio; float invscale = 1.0f / scale; float width; if (state->fontId == FONS_INVALID) return 0; fonsSetSize(ctx->fs, state->fontSize*scale); fonsSetSpacing(ctx->fs, state->letterSpacing*scale); fonsSetBlur(ctx->fs, state->fontBlur*scale); fonsSetAlign(ctx->fs, state->textAlign); fonsSetFont(ctx->fs, state->fontId); width = fonsTextBounds(ctx->fs, x*scale, y*scale, string, end, bounds); if (bounds != NULL) { // Use line bounds for height. fonsLineBounds(ctx->fs, y*scale, &bounds[1], &bounds[3]); bounds[0] *= invscale; bounds[1] *= invscale; bounds[2] *= invscale; bounds[3] *= invscale; } return width * invscale; } void nvgTextBoxBounds(NVGcontext* ctx, float x, float y, float breakRowWidth, const char* string, const char* end, float* bounds) { NVGstate* state = nvg__getState(ctx); NVGtextRow rows[2]; float scale = nvg__getFontScale(state) * ctx->devicePxRatio; float invscale = 1.0f / scale; int nrows = 0, i; int oldAlign = state->textAlign; int haling = state->textAlign & (NVG_ALIGN_LEFT | NVG_ALIGN_CENTER | NVG_ALIGN_RIGHT); int valign = state->textAlign & (NVG_ALIGN_TOP | NVG_ALIGN_MIDDLE | NVG_ALIGN_BOTTOM | NVG_ALIGN_BASELINE); float lineh = 0, rminy = 0, rmaxy = 0; float minx, miny, maxx, maxy; if (state->fontId == FONS_INVALID) { if (bounds != NULL) bounds[0] = bounds[1] = bounds[2] = bounds[3] = 0.0f; return; } nvgTextMetrics(ctx, NULL, NULL, &lineh); state->textAlign = NVG_ALIGN_LEFT | valign; minx = maxx = x; miny = maxy = y; fonsSetSize(ctx->fs, state->fontSize*scale); fonsSetSpacing(ctx->fs, state->letterSpacing*scale); fonsSetBlur(ctx->fs, state->fontBlur*scale); fonsSetAlign(ctx->fs, state->textAlign); fonsSetFont(ctx->fs, state->fontId); fonsLineBounds(ctx->fs, 0, &rminy, &rmaxy); rminy *= invscale; rmaxy *= invscale; while ((nrows = nvgTextBreakLines(ctx, string, end, breakRowWidth, rows, 2))) { for (i = 0; i < nrows; i++) { NVGtextRow* row = &rows[i]; float rminx, rmaxx, dx = 0; // Horizontal bounds if (haling & NVG_ALIGN_LEFT) dx = 0; else if (haling & NVG_ALIGN_CENTER) dx = breakRowWidth*0.5f - row->width*0.5f; else if (haling & NVG_ALIGN_RIGHT) dx = breakRowWidth - row->width; rminx = x + row->minx + dx; rmaxx = x + row->maxx + dx; minx = nvg__minf(minx, rminx); maxx = nvg__maxf(maxx, rmaxx); // Vertical bounds. miny = nvg__minf(miny, y + rminy); maxy = nvg__maxf(maxy, y + rmaxy); y += lineh * state->lineHeight; } string = rows[nrows-1].next; } state->textAlign = oldAlign; if (bounds != NULL) { bounds[0] = minx; bounds[1] = miny; bounds[2] = maxx; bounds[3] = maxy; } } void nvgTextMetrics(NVGcontext* ctx, float* ascender, float* descender, float* lineh) { NVGstate* state = nvg__getState(ctx); float scale = nvg__getFontScale(state) * ctx->devicePxRatio; float invscale = 1.0f / scale; if (state->fontId == FONS_INVALID) return; fonsSetSize(ctx->fs, state->fontSize*scale); fonsSetSpacing(ctx->fs, state->letterSpacing*scale); fonsSetBlur(ctx->fs, state->fontBlur*scale); fonsSetAlign(ctx->fs, state->textAlign); fonsSetFont(ctx->fs, state->fontId); fonsVertMetrics(ctx->fs, ascender, descender, lineh); if (ascender != NULL) *ascender *= invscale; if (descender != NULL) *descender *= invscale; if (lineh != NULL) *lineh *= invscale; } // vim: ft=c nu noet ts=4