#include "sha256.h" #include <assert.h> #include <string.h> #define ROTLEFT(a, b) (((a) << (b)) | ((a) >> (32 - (b)))) #define ROTRIGHT(a, b) (((a) >> (b)) | ((a) << (32 - (b)))) #define CH(x, y, z) (((x) & (y)) ^ (~(x) & (z))) #define MAJ(x, y, z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) #define EP0(x) (ROTRIGHT(x, 2) ^ ROTRIGHT(x, 13) ^ ROTRIGHT(x, 22)) #define EP1(x) (ROTRIGHT(x, 6) ^ ROTRIGHT(x, 11) ^ ROTRIGHT(x, 25)) #define SIG0(x) (ROTRIGHT(x, 7) ^ ROTRIGHT(x, 18) ^ ((x) >> 3)) #define SIG1(x) (ROTRIGHT(x, 17) ^ ROTRIGHT(x, 19) ^ ((x) >> 10)) static u32 kit_sha256_k[64] = { 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 }; static void kit_sha256_transform(u32 *state, u8 *data) { assert(state != NULL); assert(data != NULL); u32 a, b, c, d, e, f, g, h, i, j, t1, t2, m[64]; for (i = 0, j = 0; i < 16; ++i, j += 4) m[i] = ((u32) data[j] << 24) | ((u32) data[j + 1] << 16) | ((u32) data[j + 2] << 8) | ((u32) data[j + 3]); for (; i < 64; ++i) m[i] = SIG1(m[i - 2]) + m[i - 7] + SIG0(m[i - 15]) + m[i - 16]; a = state[0]; b = state[1]; c = state[2]; d = state[3]; e = state[4]; f = state[5]; g = state[6]; h = state[7]; for (i = 0; i < 64; ++i) { t1 = h + EP1(e) + CH(e, f, g) + kit_sha256_k[i] + m[i]; t2 = EP0(a) + MAJ(a, b, c); h = g; g = f; f = e; e = d + t1; d = c; c = b; b = a; a = t1 + t2; } state[0] += a; state[1] += b; state[2] += c; state[3] += d; state[4] += e; state[5] += f; state[6] += g; state[7] += h; } kit_sha256_hash_t kit_sha256(i64 in_size, u8 *in_data) { assert(in_size >= 0); assert(in_data != NULL); u32 state[8] = { 0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19 }; u8 data[64]; i64 i; i64 datalen = 0; u64 bitlen = 0; if (in_data != NULL) for (i = 0; i < in_size; ++i) { data[datalen] = in_data[i]; datalen++; if (datalen != 64) continue; kit_sha256_transform(state, data); bitlen += 512; datalen = 0; } i = datalen; if (datalen < 56) { data[i++] = 0x80; while (i < 56) data[i++] = 0x00; } else { data[i++] = 0x80; while (i < 64) data[i++] = 0x00; kit_sha256_transform(state, data); memset(data, 0, 56); } bitlen += datalen * 8; data[63] = bitlen; data[62] = bitlen >> 8; data[61] = bitlen >> 16; data[60] = bitlen >> 24; data[59] = bitlen >> 32; data[58] = bitlen >> 40; data[57] = bitlen >> 48; data[56] = bitlen >> 56; kit_sha256_transform(state, data); kit_sha256_hash_t hash; memset(&hash, 0, sizeof hash); for (i = 0; i < 4; ++i) { hash.v[i] = (state[0] >> (24 - i * 8)) & 0xff; hash.v[i + 4] = (state[1] >> (24 - i * 8)) & 0xff; hash.v[i + 8] = (state[2] >> (24 - i * 8)) & 0xff; hash.v[i + 12] = (state[3] >> (24 - i * 8)) & 0xff; hash.v[i + 16] = (state[4] >> (24 - i * 8)) & 0xff; hash.v[i + 20] = (state[5] >> (24 - i * 8)) & 0xff; hash.v[i + 24] = (state[6] >> (24 - i * 8)) & 0xff; hash.v[i + 28] = (state[7] >> (24 - i * 8)) & 0xff; } return hash; } #undef ROTLEFT #undef ROTRIGHT #undef CH #undef MAJ #undef EP0 #undef EP1 #undef SIG0 #undef SIG1