/************************************************************************** * * Copyright 2013-2014 RAD Game Tools and Valve Software * Copyright 2010-2014 Rich Geldreich and Tenacious Software LLC * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person *obtaining a copy of this software and associated documentation files *(the "Software"), to deal in the Software without restriction, *including without limitation the rights to use, copy, modify, merge, *publish, distribute, sublicense, and/or sell copies of the Software, *and to permit persons to whom the Software is furnished to do so, *subject to the following conditions: * * The above copyright notice and this permission notice shall be *included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, *EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF *MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND *NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS *BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN *ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN *CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE *SOFTWARE. * **************************************************************************/ #include "miniz.h" #ifndef MINIZ_NO_INFLATE_APIS # ifdef __cplusplus extern "C" { # endif /* ------------------- Low-level Decompression (completely independent * from all compression API's) */ # define TINFL_MEMCPY(d, s, l) memcpy(d, s, l) # define TINFL_MEMSET(p, c, l) memset(p, c, l) # define TINFL_CR_BEGIN \ switch (r->m_state) { \ case 0: # define TINFL_CR_RETURN(state_index, result) \ do { \ status = result; \ r->m_state = state_index; \ goto common_exit; \ case state_index:; \ } \ MZ_MACRO_END # define TINFL_CR_RETURN_FOREVER(state_index, result) \ do { \ for (;;) { TINFL_CR_RETURN(state_index, result); } \ } \ MZ_MACRO_END # define TINFL_CR_FINISH } # define TINFL_GET_BYTE(state_index, c) \ do { \ while (pIn_buf_cur >= pIn_buf_end) { \ TINFL_CR_RETURN( \ state_index, \ (decomp_flags & TINFL_FLAG_HAS_MORE_INPUT) \ ? TINFL_STATUS_NEEDS_MORE_INPUT \ : TINFL_STATUS_FAILED_CANNOT_MAKE_PROGRESS); \ } \ c = *pIn_buf_cur++; \ } \ MZ_MACRO_END # define TINFL_NEED_BITS(state_index, n) \ do { \ mz_uint c; \ TINFL_GET_BYTE(state_index, c); \ bit_buf |= (((tinfl_bit_buf_t) c) << num_bits); \ num_bits += 8; \ } while (num_bits < (mz_uint) (n)) # define TINFL_SKIP_BITS(state_index, n) \ do { \ if (num_bits < (mz_uint) (n)) { \ TINFL_NEED_BITS(state_index, n); \ } \ bit_buf >>= (n); \ num_bits -= (n); \ } \ MZ_MACRO_END # define TINFL_GET_BITS(state_index, b, n) \ do { \ if (num_bits < (mz_uint) (n)) { \ TINFL_NEED_BITS(state_index, n); \ } \ b = bit_buf & ((1 << (n)) - 1); \ bit_buf >>= (n); \ num_bits -= (n); \ } \ MZ_MACRO_END /* TINFL_HUFF_BITBUF_FILL() is only used rarely, when the number of * bytes remaining in the input buffer falls below 2. */ /* It reads just enough bytes from the input stream that are needed to * decode the next Huffman code (and absolutely no more). It works by * trying to fully decode a */ /* Huffman code by using whatever bits are currently present in the * bit buffer. If this fails, it reads another byte, and tries again * until it succeeds or until the */ /* bit buffer contains >=15 bits (deflate's max. Huffman code size). */ # define TINFL_HUFF_BITBUF_FILL(state_index, pLookUp, pTree) \ do { \ temp = pLookUp[bit_buf & (TINFL_FAST_LOOKUP_SIZE - 1)]; \ if (temp >= 0) { \ code_len = temp >> 9; \ if ((code_len) && (num_bits >= code_len)) \ break; \ } else if (num_bits > TINFL_FAST_LOOKUP_BITS) { \ code_len = TINFL_FAST_LOOKUP_BITS; \ do { \ temp = pTree[~temp + ((bit_buf >> code_len++) & 1)]; \ } while ((temp < 0) && (num_bits >= (code_len + 1))); \ if (temp >= 0) \ break; \ } \ TINFL_GET_BYTE(state_index, c); \ bit_buf |= (((tinfl_bit_buf_t) c) << num_bits); \ num_bits += 8; \ } while (num_bits < 15); /* TINFL_HUFF_DECODE() decodes the next Huffman coded symbol. It's * more complex than you would initially expect because the zlib API * expects the decompressor to never read */ /* beyond the final byte of the deflate stream. (In other words, when * this macro wants to read another byte from the input, it REALLY * needs another byte in order to fully */ /* decode the next Huffman code.) Handling this properly is * particularly important on raw deflate (non-zlib) streams, which * aren't followed by a byte aligned adler-32. */ /* The slow path is only executed at the very end of the input buffer. */ /* v1.16: The original macro handled the case at the very end of the * passed-in input buffer, but we also need to handle the case where * the user passes in 1+zillion bytes */ /* following the deflate data and our non-conservative read-ahead path * won't kick in here on this code. This is much trickier. */ # define TINFL_HUFF_DECODE(state_index, sym, pLookUp, pTree) \ do { \ int temp; \ mz_uint code_len, c; \ if (num_bits < 15) { \ if ((pIn_buf_end - pIn_buf_cur) < 2) { \ TINFL_HUFF_BITBUF_FILL(state_index, pLookUp, pTree); \ } else { \ bit_buf |= (((tinfl_bit_buf_t) pIn_buf_cur[0]) \ << num_bits) | \ (((tinfl_bit_buf_t) pIn_buf_cur[1]) \ << (num_bits + 8)); \ pIn_buf_cur += 2; \ num_bits += 16; \ } \ } \ if ((temp = \ pLookUp[bit_buf & (TINFL_FAST_LOOKUP_SIZE - 1)]) >= \ 0) \ code_len = temp >> 9, temp &= 511; \ else { \ code_len = TINFL_FAST_LOOKUP_BITS; \ do { \ temp = pTree[~temp + ((bit_buf >> code_len++) & 1)]; \ } while (temp < 0); \ } \ sym = temp; \ bit_buf >>= code_len; \ num_bits -= code_len; \ } \ MZ_MACRO_END static void tinfl_clear_tree(tinfl_decompressor *r) { if (r->m_type == 0) MZ_CLEAR_ARR(r->m_tree_0); else if (r->m_type == 1) MZ_CLEAR_ARR(r->m_tree_1); else MZ_CLEAR_ARR(r->m_tree_2); } tinfl_status tinfl_decompress(tinfl_decompressor *r, const mz_uint8 *pIn_buf_next, size_t *pIn_buf_size, mz_uint8 *pOut_buf_start, mz_uint8 *pOut_buf_next, size_t *pOut_buf_size, const mz_uint32 decomp_flags) { static const mz_uint16 s_length_base[31] = { 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31, 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0 }; static const mz_uint8 s_length_extra[31] = { 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 0, 0 }; static const mz_uint16 s_dist_base[32] = { 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193, 257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145, 8193, 12289, 16385, 24577, 0, 0 }; static const mz_uint8 s_dist_extra[32] = { 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13 }; static const mz_uint8 s_length_dezigzag[19] = { 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15 }; static const mz_uint16 s_min_table_sizes[3] = { 257, 1, 4 }; mz_int16 *pTrees[3]; mz_uint8 *pCode_sizes[3]; tinfl_status status = TINFL_STATUS_FAILED; mz_uint32 num_bits, dist, counter, num_extra; tinfl_bit_buf_t bit_buf; const mz_uint8 *pIn_buf_cur = pIn_buf_next, *const pIn_buf_end = pIn_buf_next + *pIn_buf_size; mz_uint8 *pOut_buf_cur = pOut_buf_next, *const pOut_buf_end = pOut_buf_next ? pOut_buf_next + *pOut_buf_size : NULL; size_t out_buf_size_mask = (decomp_flags & TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF) ? (size_t) -1 : ((pOut_buf_next - pOut_buf_start) + *pOut_buf_size) - 1, dist_from_out_buf_start; /* Ensure the output buffer's size is a power of 2, unless the * output buffer is large enough to hold the entire output file (in * which case it doesn't matter). */ if (((out_buf_size_mask + 1) & out_buf_size_mask) || (pOut_buf_next < pOut_buf_start)) { *pIn_buf_size = *pOut_buf_size = 0; return TINFL_STATUS_BAD_PARAM; } pTrees[0] = r->m_tree_0; pTrees[1] = r->m_tree_1; pTrees[2] = r->m_tree_2; pCode_sizes[0] = r->m_code_size_0; pCode_sizes[1] = r->m_code_size_1; pCode_sizes[2] = r->m_code_size_2; num_bits = r->m_num_bits; bit_buf = r->m_bit_buf; dist = r->m_dist; counter = r->m_counter; num_extra = r->m_num_extra; dist_from_out_buf_start = r->m_dist_from_out_buf_start; TINFL_CR_BEGIN bit_buf = num_bits = dist = counter = num_extra = r->m_zhdr0 = r->m_zhdr1 = 0; r->m_z_adler32 = r->m_check_adler32 = 1; if (decomp_flags & TINFL_FLAG_PARSE_ZLIB_HEADER) { TINFL_GET_BYTE(1, r->m_zhdr0); TINFL_GET_BYTE(2, r->m_zhdr1); counter = (((r->m_zhdr0 * 256 + r->m_zhdr1) % 31 != 0) || (r->m_zhdr1 & 32) || ((r->m_zhdr0 & 15) != 8)); if (!(decomp_flags & TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF)) counter |= (((1U << (8U + (r->m_zhdr0 >> 4))) > 32768U) || ((out_buf_size_mask + 1) < (size_t) ((size_t) 1 << (8U + (r->m_zhdr0 >> 4))))); if (counter) { TINFL_CR_RETURN_FOREVER(36, TINFL_STATUS_FAILED); } } do { TINFL_GET_BITS(3, r->m_final, 3); r->m_type = r->m_final >> 1; if (r->m_type == 0) { TINFL_SKIP_BITS(5, num_bits & 7); for (counter = 0; counter < 4; ++counter) { if (num_bits) TINFL_GET_BITS(6, r->m_raw_header[counter], 8); else TINFL_GET_BYTE(7, r->m_raw_header[counter]); } if ((counter = (r->m_raw_header[0] | (r->m_raw_header[1] << 8))) != (mz_uint) (0xFFFF ^ (r->m_raw_header[2] | (r->m_raw_header[3] << 8)))) { TINFL_CR_RETURN_FOREVER(39, TINFL_STATUS_FAILED); } while ((counter) && (num_bits)) { TINFL_GET_BITS(51, dist, 8); while (pOut_buf_cur >= pOut_buf_end) { TINFL_CR_RETURN(52, TINFL_STATUS_HAS_MORE_OUTPUT); } *pOut_buf_cur++ = (mz_uint8) dist; counter--; } while (counter) { size_t n; while (pOut_buf_cur >= pOut_buf_end) { TINFL_CR_RETURN(9, TINFL_STATUS_HAS_MORE_OUTPUT); } while (pIn_buf_cur >= pIn_buf_end) { TINFL_CR_RETURN( 38, (decomp_flags & TINFL_FLAG_HAS_MORE_INPUT) ? TINFL_STATUS_NEEDS_MORE_INPUT : TINFL_STATUS_FAILED_CANNOT_MAKE_PROGRESS); } n = MZ_MIN(MZ_MIN((size_t) (pOut_buf_end - pOut_buf_cur), (size_t) (pIn_buf_end - pIn_buf_cur)), counter); TINFL_MEMCPY(pOut_buf_cur, pIn_buf_cur, n); pIn_buf_cur += n; pOut_buf_cur += n; counter -= (mz_uint) n; } } else if (r->m_type == 3) { TINFL_CR_RETURN_FOREVER(10, TINFL_STATUS_FAILED); } else { if (r->m_type == 1) { mz_uint8 *p = r->m_code_size_0; mz_uint i; r->m_table_sizes[0] = 288; r->m_table_sizes[1] = 32; TINFL_MEMSET(r->m_code_size_1, 5, 32); for (i = 0; i <= 143; ++i) *p++ = 8; for (; i <= 255; ++i) *p++ = 9; for (; i <= 279; ++i) *p++ = 7; for (; i <= 287; ++i) *p++ = 8; } else { for (counter = 0; counter < 3; counter++) { TINFL_GET_BITS(11, r->m_table_sizes[counter], "\05\05\04"[counter]); r->m_table_sizes[counter] += s_min_table_sizes[counter]; } MZ_CLEAR_ARR(r->m_code_size_2); for (counter = 0; counter < r->m_table_sizes[2]; counter++) { mz_uint s; TINFL_GET_BITS(14, s, 3); r->m_code_size_2[s_length_dezigzag[counter]] = (mz_uint8) s; } r->m_table_sizes[2] = 19; } for (; (int) r->m_type >= 0; r->m_type--) { int tree_next, tree_cur; mz_int16 *pLookUp; mz_int16 *pTree; mz_uint8 *pCode_size; mz_uint i, j, used_syms, total, sym_index, next_code[17], total_syms[16]; pLookUp = r->m_look_up[r->m_type]; pTree = pTrees[r->m_type]; pCode_size = pCode_sizes[r->m_type]; MZ_CLEAR_ARR(total_syms); TINFL_MEMSET(pLookUp, 0, sizeof(r->m_look_up[0])); tinfl_clear_tree(r); for (i = 0; i < r->m_table_sizes[r->m_type]; ++i) total_syms[pCode_size[i]]++; used_syms = 0, total = 0; next_code[0] = next_code[1] = 0; for (i = 1; i <= 15; ++i) { used_syms += total_syms[i]; next_code[i + 1] = (total = ((total + total_syms[i]) << 1)); } if ((65536 != total) && (used_syms > 1)) { TINFL_CR_RETURN_FOREVER(35, TINFL_STATUS_FAILED); } for (tree_next = -1, sym_index = 0; sym_index < r->m_table_sizes[r->m_type]; ++sym_index) { mz_uint rev_code = 0, l, cur_code, code_size = pCode_size[sym_index]; if (!code_size) continue; cur_code = next_code[code_size]++; for (l = code_size; l > 0; l--, cur_code >>= 1) rev_code = (rev_code << 1) | (cur_code & 1); if (code_size <= TINFL_FAST_LOOKUP_BITS) { mz_int16 k = (mz_int16) ((code_size << 9) | sym_index); while (rev_code < TINFL_FAST_LOOKUP_SIZE) { pLookUp[rev_code] = k; rev_code += (1 << code_size); } continue; } if (0 == (tree_cur = pLookUp[rev_code & (TINFL_FAST_LOOKUP_SIZE - 1)])) { pLookUp[rev_code & (TINFL_FAST_LOOKUP_SIZE - 1)] = (mz_int16) tree_next; tree_cur = tree_next; tree_next -= 2; } rev_code >>= (TINFL_FAST_LOOKUP_BITS - 1); for (j = code_size; j > (TINFL_FAST_LOOKUP_BITS + 1); j--) { tree_cur -= ((rev_code >>= 1) & 1); if (!pTree[-tree_cur - 1]) { pTree[-tree_cur - 1] = (mz_int16) tree_next; tree_cur = tree_next; tree_next -= 2; } else tree_cur = pTree[-tree_cur - 1]; } tree_cur -= ((rev_code >>= 1) & 1); pTree[-tree_cur - 1] = (mz_int16) sym_index; } if (r->m_type == 2) { for (counter = 0; counter < (r->m_table_sizes[0] + r->m_table_sizes[1]);) { mz_uint s; TINFL_HUFF_DECODE(16, dist, r->m_look_up[2], r->m_tree_2); if (dist < 16) { r->m_len_codes[counter++] = (mz_uint8) dist; continue; } if ((dist == 16) && (!counter)) { TINFL_CR_RETURN_FOREVER(17, TINFL_STATUS_FAILED); } num_extra = "\02\03\07"[dist - 16]; TINFL_GET_BITS(18, s, num_extra); s += "\03\03\013"[dist - 16]; TINFL_MEMSET( r->m_len_codes + counter, (dist == 16) ? r->m_len_codes[counter - 1] : 0, s); counter += s; } if ((r->m_table_sizes[0] + r->m_table_sizes[1]) != counter) { TINFL_CR_RETURN_FOREVER(21, TINFL_STATUS_FAILED); } TINFL_MEMCPY(r->m_code_size_0, r->m_len_codes, r->m_table_sizes[0]); TINFL_MEMCPY(r->m_code_size_1, r->m_len_codes + r->m_table_sizes[0], r->m_table_sizes[1]); } } for (;;) { mz_uint8 *pSrc; for (;;) { if (((pIn_buf_end - pIn_buf_cur) < 4) || ((pOut_buf_end - pOut_buf_cur) < 2)) { TINFL_HUFF_DECODE(23, counter, r->m_look_up[0], r->m_tree_0); if (counter >= 256) break; while (pOut_buf_cur >= pOut_buf_end) { TINFL_CR_RETURN(24, TINFL_STATUS_HAS_MORE_OUTPUT); } *pOut_buf_cur++ = (mz_uint8) counter; } else { int sym2; mz_uint code_len; # if TINFL_USE_64BIT_BITBUF if (num_bits < 30) { bit_buf |= (((tinfl_bit_buf_t) MZ_READ_LE32(pIn_buf_cur)) << num_bits); pIn_buf_cur += 4; num_bits += 32; } # else if (num_bits < 15) { bit_buf |= (((tinfl_bit_buf_t) MZ_READ_LE16(pIn_buf_cur)) << num_bits); pIn_buf_cur += 2; num_bits += 16; } # endif if ((sym2 = r->m_look_up[0][bit_buf & (TINFL_FAST_LOOKUP_SIZE - 1)]) >= 0) code_len = sym2 >> 9; else { code_len = TINFL_FAST_LOOKUP_BITS; do { sym2 = r->m_tree_0[~sym2 + ((bit_buf >> code_len++) & 1)]; } while (sym2 < 0); } counter = sym2; bit_buf >>= code_len; num_bits -= code_len; if (counter & 256) break; # if !TINFL_USE_64BIT_BITBUF if (num_bits < 15) { bit_buf |= (((tinfl_bit_buf_t) MZ_READ_LE16(pIn_buf_cur)) << num_bits); pIn_buf_cur += 2; num_bits += 16; } # endif if ((sym2 = r->m_look_up[0][bit_buf & (TINFL_FAST_LOOKUP_SIZE - 1)]) >= 0) code_len = sym2 >> 9; else { code_len = TINFL_FAST_LOOKUP_BITS; do { sym2 = r->m_tree_0[~sym2 + ((bit_buf >> code_len++) & 1)]; } while (sym2 < 0); } bit_buf >>= code_len; num_bits -= code_len; pOut_buf_cur[0] = (mz_uint8) counter; if (sym2 & 256) { pOut_buf_cur++; counter = sym2; break; } pOut_buf_cur[1] = (mz_uint8) sym2; pOut_buf_cur += 2; } } if ((counter &= 511) == 256) break; num_extra = s_length_extra[counter - 257]; counter = s_length_base[counter - 257]; if (num_extra) { mz_uint extra_bits; TINFL_GET_BITS(25, extra_bits, num_extra); counter += extra_bits; } TINFL_HUFF_DECODE(26, dist, r->m_look_up[1], r->m_tree_1); num_extra = s_dist_extra[dist]; dist = s_dist_base[dist]; if (num_extra) { mz_uint extra_bits; TINFL_GET_BITS(27, extra_bits, num_extra); dist += extra_bits; } dist_from_out_buf_start = pOut_buf_cur - pOut_buf_start; if ((dist == 0 || dist > dist_from_out_buf_start || dist_from_out_buf_start == 0) && (decomp_flags & TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF)) { TINFL_CR_RETURN_FOREVER(37, TINFL_STATUS_FAILED); } pSrc = pOut_buf_start + ((dist_from_out_buf_start - dist) & out_buf_size_mask); if ((MZ_MAX(pOut_buf_cur, pSrc) + counter) > pOut_buf_end) { while (counter--) { while (pOut_buf_cur >= pOut_buf_end) { TINFL_CR_RETURN(53, TINFL_STATUS_HAS_MORE_OUTPUT); } *pOut_buf_cur++ = pOut_buf_start[(dist_from_out_buf_start++ - dist) & out_buf_size_mask]; } continue; } # if MINIZ_USE_UNALIGNED_LOADS_AND_STORES else if ((counter >= 9) && (counter <= dist)) { const mz_uint8 *pSrc_end = pSrc + (counter & ~7); do { # ifdef MINIZ_UNALIGNED_USE_MEMCPY memcpy(pOut_buf_cur, pSrc, sizeof(mz_uint32) * 2); # else ((mz_uint32 *) pOut_buf_cur)[0] = (( const mz_uint32 *) pSrc)[0]; ((mz_uint32 *) pOut_buf_cur)[1] = (( const mz_uint32 *) pSrc)[1]; # endif pOut_buf_cur += 8; } while ((pSrc += 8) < pSrc_end); if ((counter &= 7) < 3) { if (counter) { pOut_buf_cur[0] = pSrc[0]; if (counter > 1) pOut_buf_cur[1] = pSrc[1]; pOut_buf_cur += counter; } continue; } } # endif while (counter > 2) { pOut_buf_cur[0] = pSrc[0]; pOut_buf_cur[1] = pSrc[1]; pOut_buf_cur[2] = pSrc[2]; pOut_buf_cur += 3; pSrc += 3; counter -= 3; } if (counter > 0) { pOut_buf_cur[0] = pSrc[0]; if (counter > 1) pOut_buf_cur[1] = pSrc[1]; pOut_buf_cur += counter; } } } } while (!(r->m_final & 1)); /* Ensure byte alignment and put back any bytes from the bitbuf if * we've looked ahead too far on gzip, or other Deflate streams * followed by arbitrary data. */ /* I'm being super conservative here. A number of simplifications * can be made to the byte alignment part, and the Adler32 check * shouldn't ever need to worry about reading from the bitbuf now. */ TINFL_SKIP_BITS(32, num_bits & 7); while ((pIn_buf_cur > pIn_buf_next) && (num_bits >= 8)) { --pIn_buf_cur; num_bits -= 8; } bit_buf &= ~(~(tinfl_bit_buf_t) 0 << num_bits); MZ_ASSERT(!num_bits); /* if this assert fires then we've read beyond the end of non-deflate/zlib streams with following data (such as gzip streams). */ if (decomp_flags & TINFL_FLAG_PARSE_ZLIB_HEADER) { for (counter = 0; counter < 4; ++counter) { mz_uint s; if (num_bits) TINFL_GET_BITS(41, s, 8); else TINFL_GET_BYTE(42, s); r->m_z_adler32 = (r->m_z_adler32 << 8) | s; } } TINFL_CR_RETURN_FOREVER(34, TINFL_STATUS_DONE); TINFL_CR_FINISH common_exit: /* As long as we aren't telling the caller that we NEED more input * to make forward progress: */ /* Put back any bytes from the bitbuf in case we've looked ahead too * far on gzip, or other Deflate streams followed by arbitrary data. */ /* We need to be very careful here to NOT push back any bytes we * definitely know we need to make forward progress, though, or * we'll lock the caller up into an inf loop. */ if ((status != TINFL_STATUS_NEEDS_MORE_INPUT) && (status != TINFL_STATUS_FAILED_CANNOT_MAKE_PROGRESS)) { while ((pIn_buf_cur > pIn_buf_next) && (num_bits >= 8)) { --pIn_buf_cur; num_bits -= 8; } } r->m_num_bits = num_bits; r->m_bit_buf = bit_buf & ~(~(tinfl_bit_buf_t) 0 << num_bits); r->m_dist = dist; r->m_counter = counter; r->m_num_extra = num_extra; r->m_dist_from_out_buf_start = dist_from_out_buf_start; *pIn_buf_size = pIn_buf_cur - pIn_buf_next; *pOut_buf_size = pOut_buf_cur - pOut_buf_next; if ((decomp_flags & (TINFL_FLAG_PARSE_ZLIB_HEADER | TINFL_FLAG_COMPUTE_ADLER32)) && (status >= 0)) { const mz_uint8 *ptr = pOut_buf_next; size_t buf_len = *pOut_buf_size; mz_uint32 i, s1 = r->m_check_adler32 & 0xffff, s2 = r->m_check_adler32 >> 16; size_t block_len = buf_len % 5552; while (buf_len) { for (i = 0; i + 7 < block_len; i += 8, ptr += 8) { s1 += ptr[0], s2 += s1; s1 += ptr[1], s2 += s1; s1 += ptr[2], s2 += s1; s1 += ptr[3], s2 += s1; s1 += ptr[4], s2 += s1; s1 += ptr[5], s2 += s1; s1 += ptr[6], s2 += s1; s1 += ptr[7], s2 += s1; } for (; i < block_len; ++i) s1 += *ptr++, s2 += s1; s1 %= 65521U, s2 %= 65521U; buf_len -= block_len; block_len = 5552; } r->m_check_adler32 = (s2 << 16) + s1; if ((status == TINFL_STATUS_DONE) && (decomp_flags & TINFL_FLAG_PARSE_ZLIB_HEADER) && (r->m_check_adler32 != r->m_z_adler32)) status = TINFL_STATUS_ADLER32_MISMATCH; } return status; } /* Higher level helper functions. */ void *tinfl_decompress_mem_to_heap(const void *pSrc_buf, size_t src_buf_len, size_t *pOut_len, int flags) { tinfl_decompressor decomp; void *pBuf = NULL, *pNew_buf; size_t src_buf_ofs = 0, out_buf_capacity = 0; *pOut_len = 0; tinfl_init(&decomp); for (;;) { size_t src_buf_size = src_buf_len - src_buf_ofs, dst_buf_size = out_buf_capacity - *pOut_len, new_out_buf_capacity; tinfl_status status = tinfl_decompress( &decomp, (const mz_uint8 *) pSrc_buf + src_buf_ofs, &src_buf_size, (mz_uint8 *) pBuf, pBuf ? (mz_uint8 *) pBuf + *pOut_len : NULL, &dst_buf_size, (flags & ~TINFL_FLAG_HAS_MORE_INPUT) | TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF); if ((status < 0) || (status == TINFL_STATUS_NEEDS_MORE_INPUT)) { MZ_FREE(pBuf); *pOut_len = 0; return NULL; } src_buf_ofs += src_buf_size; *pOut_len += dst_buf_size; if (status == TINFL_STATUS_DONE) break; new_out_buf_capacity = out_buf_capacity * 2; if (new_out_buf_capacity < 128) new_out_buf_capacity = 128; pNew_buf = MZ_REALLOC(pBuf, new_out_buf_capacity); if (!pNew_buf) { MZ_FREE(pBuf); *pOut_len = 0; return NULL; } pBuf = pNew_buf; out_buf_capacity = new_out_buf_capacity; } return pBuf; } size_t tinfl_decompress_mem_to_mem(void *pOut_buf, size_t out_buf_len, const void *pSrc_buf, size_t src_buf_len, int flags) { tinfl_decompressor decomp; tinfl_status status; tinfl_init(&decomp); status = tinfl_decompress( &decomp, (const mz_uint8 *) pSrc_buf, &src_buf_len, (mz_uint8 *) pOut_buf, (mz_uint8 *) pOut_buf, &out_buf_len, (flags & ~TINFL_FLAG_HAS_MORE_INPUT) | TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF); return (status != TINFL_STATUS_DONE) ? TINFL_DECOMPRESS_MEM_TO_MEM_FAILED : out_buf_len; } int tinfl_decompress_mem_to_callback( const void *pIn_buf, size_t *pIn_buf_size, tinfl_put_buf_func_ptr pPut_buf_func, void *pPut_buf_user, int flags) { int result = 0; tinfl_decompressor decomp; mz_uint8 *pDict = (mz_uint8 *) MZ_MALLOC(TINFL_LZ_DICT_SIZE); size_t in_buf_ofs = 0, dict_ofs = 0; if (!pDict) return TINFL_STATUS_FAILED; memset(pDict, 0, TINFL_LZ_DICT_SIZE); tinfl_init(&decomp); for (;;) { size_t in_buf_size = *pIn_buf_size - in_buf_ofs, dst_buf_size = TINFL_LZ_DICT_SIZE - dict_ofs; tinfl_status status = tinfl_decompress( &decomp, (const mz_uint8 *) pIn_buf + in_buf_ofs, &in_buf_size, pDict, pDict + dict_ofs, &dst_buf_size, (flags & ~(TINFL_FLAG_HAS_MORE_INPUT | TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF))); in_buf_ofs += in_buf_size; if ((dst_buf_size) && (!(*pPut_buf_func)(pDict + dict_ofs, (int) dst_buf_size, pPut_buf_user))) break; if (status != TINFL_STATUS_HAS_MORE_OUTPUT) { result = (status == TINFL_STATUS_DONE); break; } dict_ofs = (dict_ofs + dst_buf_size) & (TINFL_LZ_DICT_SIZE - 1); } MZ_FREE(pDict); *pIn_buf_size = in_buf_ofs; return result; } # ifndef MINIZ_NO_MALLOC tinfl_decompressor *tinfl_decompressor_alloc(void) { tinfl_decompressor *pDecomp = (tinfl_decompressor *) MZ_MALLOC( sizeof(tinfl_decompressor)); if (pDecomp) tinfl_init(pDecomp); return pDecomp; } void tinfl_decompressor_free(tinfl_decompressor *pDecomp) { MZ_FREE(pDecomp); } # endif # ifdef __cplusplus } # endif #endif /*#ifndef MINIZ_NO_INFLATE_APIS*/