// ================================================================ // // kit.inl.h // https://guattari.tech/git/?p=kit.git;a=tree // // Header-only utility library for C. // // ================================================================ // // The MIT License // // Copyright (c) 2022-2023 Mitya Selivanov // // Permission is hereby granted, free of charge, to any person // obtaining a copy of this software and associated documentation // files (the "Software"), to deal in the Software without // restriction, including without limitation the rights to use, copy, // modify, merge, publish, distribute, sublicense, and/or sell copies // of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be // included in all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF // MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT // HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, // WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER // DEALINGS IN THE SOFTWARE. // // ================================================================ #ifndef KIT_INL_H #define KIT_INL_H /********************************************************************* * * * File: source/kit/types.h * * * *********************************************************************/ #ifndef KIT_TYPES_H #define KIT_TYPES_H typedef signed char i8; typedef signed short i16; typedef signed int i32; typedef signed long long i64; typedef unsigned char u8; typedef unsigned short u16; typedef unsigned int u32; typedef unsigned long long u64; typedef float f32; typedef double f64; #endif /********************************************************************* * * * File: source/kit/status.h * * * *********************************************************************/ #ifndef KIT_STATUS_H #define KIT_STATUS_H #ifdef __cplusplus extern "C" { #endif enum { KIT_OK, KIT_ERROR_BAD_ALLOC, KIT_ERROR_MKDIR_FAILED, KIT_ERROR_RMDIR_FAILED, KIT_ERROR_UNLINK_FAILED, KIT_ERROR_FILE_ALREADY_EXISTS, KIT_ERROR_FILE_DO_NOT_EXIST, KIT_ERROR_PATH_TOO_LONG, KIT_ERROR_SOCKETS_STARTUP_FAILED, KIT_ERROR_SOCKET_CONTROL_FAILED }; typedef signed int kit_status_t; #ifdef __cplusplus } #endif #endif /********************************************************************* * * * File: source/kit/allocator.h * * * *********************************************************************/ #ifndef KIT_ALLOCATOR_H #define KIT_ALLOCATOR_H #ifndef _GNU_SOURCE # define _GNU_SOURCE #endif #include #include #ifdef __cplusplus extern "C" { #endif enum { KIT_ALLOC_TYPE_NONE, KIT_ALLOC_TYPE_DEFAULT, KIT_ALLOC_TYPE_BUFFER }; enum { KIT_ALLOCATE, KIT_ALLOCATE_ZERO, KIT_DEALLOCATE, KIT_REALLOCATE, KIT_REALLOCATE_ZERO, KIT_DEALLOCATE_ALL }; typedef struct { int type; ptrdiff_t size; union { uint8_t *bytes; void *data; }; } kit_allocator_t; // Application should implement this function if custom allocator // dispatch is enabled. // // See KIT_ENABLE_CUSTOM_ALLOC_DISPATCH macro. // void *kit_alloc_dispatch(kit_allocator_t *alloc, int request, ptrdiff_t size, ptrdiff_t previous_size, void *pointer); kit_allocator_t kit_alloc_default(void); kit_allocator_t kit_alloc_buffer(ptrdiff_t size, void *buffer); #ifdef __cplusplus } #endif #endif /********************************************************************* * * * File: source/kit/time.h * * * *********************************************************************/ #ifndef KIT_TIME_H #define KIT_TIME_H #ifndef _GNU_SOURCE # define _GNU_SOURCE #endif #include #ifndef TIME_UTC # define TIME_UTC 1 #endif #ifdef __MINGW32__ # ifndef WIN32_LEAN_AND_MEAN # define WIN32_LEAN_AND_MEAN 1 # endif # include # define KIT_TIMESPEC_IMPL_UNIX_EPOCH_IN_TICKS 116444736000000000ull # define KIT_TIMESPEC_IMPL_TICKS_PER_SECONDS 10000000ull static int timespec_get(struct timespec *ts, int base) { if (ts == NULL || base != TIME_UTC) return 0; FILETIME ft; ULARGE_INTEGER date; LONGLONG ticks; GetSystemTimeAsFileTime(&ft); date.HighPart = ft.dwHighDateTime; date.LowPart = ft.dwLowDateTime; ticks = (LONGLONG) (date.QuadPart - KIT_TIMESPEC_IMPL_UNIX_EPOCH_IN_TICKS); ts->tv_sec = ticks / KIT_TIMESPEC_IMPL_TICKS_PER_SECONDS; ts->tv_nsec = (ticks % KIT_TIMESPEC_IMPL_TICKS_PER_SECONDS) * 100; return base; } #endif #endif /********************************************************************* * * * File: source/kit/thread_defs.h * * * *********************************************************************/ #ifndef KIT_THREAD_DEFS_H #define KIT_THREAD_DEFS_H #ifdef __cplusplus extern "C" { #endif enum { thrd_success = 0, thrd_timedout, thrd_error, thrd_busy, thrd_nomem, thrd_wrong_stack_size }; #ifdef __cplusplus } #endif #endif /********************************************************************* * * * File: source/kit/thread.h * * * *********************************************************************/ #ifndef KIT_THREAD_H #define KIT_THREAD_H #ifndef KIT_DISABLE_SYSTEM_THREADS # ifndef _GNU_SOURCE # define _GNU_SOURCE # endif # include # include # if defined(__cplusplus) # define _Noreturn [[noreturn]] # elif defined(_MSC_VER) # define _Noreturn __declspec(noreturn) # endif # if !defined(_WIN32) || defined(__CYGWIN__) # include # endif # ifndef _Thread_local # if defined(__cplusplus) /* C++11 doesn't need `_Thread_local` keyword or macro */ # elif !defined(__STDC_NO_THREADS__) /* threads are optional in C11, _Thread_local present in this * condition */ # elif defined(_MSC_VER) # define _Thread_local __declspec(thread) # elif defined(__GNUC__) # define _Thread_local __thread # else /* Leave _Thread_local undefined so that use of _Thread_local would * not promote to a non-thread-local global variable */ # endif # endif # if !defined(__cplusplus) /* * C11 thread_local() macro * C++11 and above already have thread_local keyword */ # ifndef thread_local # if _MSC_VER # define thread_local __declspec(thread) # else # define thread_local _Thread_local # endif # endif # endif # ifdef __cplusplus extern "C" { # endif typedef void (*tss_dtor_t)(void *); typedef int (*thrd_start_t)(void *); # if defined(_WIN32) && !defined(__CYGWIN__) typedef struct { void *handle; } thrd_t; typedef unsigned long tss_t; # else typedef pthread_t thrd_t; typedef pthread_key_t tss_t; # endif int thrd_create(thrd_t *, thrd_start_t, void *); int thrd_create_with_stack(thrd_t *, thrd_start_t, void *, ptrdiff_t stack_size); thrd_t thrd_current(void); int thrd_detach(thrd_t); int thrd_equal(thrd_t, thrd_t); _Noreturn void thrd_exit(int); int thrd_join(thrd_t, int *); int thrd_sleep(const struct timespec *, struct timespec *); void thrd_yield(void); # ifdef __cplusplus } # endif #endif #endif /********************************************************************* * * * File: source/kit/atomic.h * * * *********************************************************************/ #ifndef KIT_ATOMIC_H #define KIT_ATOMIC_H #ifndef _GNU_SOURCE # define _GNU_SOURCE #endif #include #ifndef _MSC_VER # include # define KIT_ATOMIC(type_) type_ _Atomic #else # include # define KIT_ATOMIC(type_) type_ volatile # ifdef __cplusplus extern "C" { # endif enum { memory_order_relaxed, memory_order_consume, memory_order_acquire, memory_order_release, memory_order_acq_rel, memory_order_seq_cst }; void kit_atomic_store_explicit_8(uint8_t volatile *var, uint8_t value, int memory_order); void kit_atomic_store_explicit_16(uint16_t volatile *var, uint16_t value, int memory_order); void kit_atomic_store_explicit_32(uint32_t volatile *var, uint32_t value, int memory_order); void kit_atomic_store_explicit_64(uint64_t volatile *var, uint64_t value, int memory_order); uint8_t kit_atomic_load_explicit_8(uint8_t volatile *var, int memory_order); uint16_t kit_atomic_load_explicit_16(uint16_t volatile *var, int memory_order); uint32_t kit_atomic_load_explicit_32(uint32_t volatile *var, int memory_order); uint64_t kit_atomic_load_explicit_64(uint64_t volatile *var, int memory_order); uint8_t kit_atomic_exchange_explicit_8(uint8_t volatile *var, uint8_t value, int memory_order); uint16_t kit_atomic_exchange_explicit_16(uint16_t volatile *var, uint16_t value, int memory_order); uint32_t kit_atomic_exchange_explicit_32(uint32_t volatile *var, uint32_t value, int memory_order); uint64_t kit_atomic_exchange_explicit_64(uint64_t volatile *var, uint64_t value, int memory_order); uint8_t kit_atomic_fetch_add_explicit_8(uint8_t volatile *var, uint8_t value, int memory_order); uint16_t kit_atomic_fetch_add_explicit_16(uint16_t volatile *var, uint16_t value, int memory_order); uint32_t kit_atomic_fetch_add_explicit_32(uint32_t volatile *var, uint32_t value, int memory_order); uint64_t kit_atomic_fetch_add_explicit_64(uint64_t volatile *var, uint64_t value, int memory_order); # define atomic_store_explicit(var_, value_, memory_order_) \ do { \ assert(sizeof *(var_) == 1 || sizeof *(var_) == 2 || \ sizeof *(var_) == 4 || sizeof *(var_) == 8); \ if (sizeof *(var_) == 1) \ kit_atomic_store_explicit_8((uint8_t volatile *) (var_), \ (uint8_t) (value_), \ (memory_order_)); \ if (sizeof *(var_) == 2) \ kit_atomic_store_explicit_16((uint16_t volatile *) (var_), \ (uint16_t) (value_), \ (memory_order_)); \ if (sizeof *(var_) == 4) \ kit_atomic_store_explicit_32((uint32_t volatile *) (var_), \ (uint32_t) (value_), \ (memory_order_)); \ if (sizeof *(var_) == 8) \ kit_atomic_store_explicit_64((uint64_t volatile *) (var_), \ (uint64_t) (value_), \ (memory_order_)); \ } while (0) # define atomic_load_explicit(var_, memory_order_) \ (assert(sizeof *(var_) == 1 || sizeof *(var_) == 2 || \ sizeof *(var_) == 4 || sizeof *(var_) == 8), \ (sizeof *(var_) == 1 \ ? kit_atomic_load_explicit_8((uint8_t volatile *) (var_), \ (memory_order_)) \ : sizeof *(var_) == 2 \ ? kit_atomic_load_explicit_16( \ (uint16_t volatile *) (var_), (memory_order_)) \ : sizeof *(var_) == 4 \ ? kit_atomic_load_explicit_32( \ (uint32_t volatile *) (var_), (memory_order_)) \ : kit_atomic_load_explicit_64( \ (uint64_t volatile *) (var_), (memory_order_)))) # define atomic_exchange_explicit(var_, value_, memory_order_) \ (assert(sizeof *(var_) == 1 || sizeof *(var_) == 2 || \ sizeof *(var_) == 4 || sizeof *(var_) == 8), \ (sizeof *(var_) == 1 ? kit_atomic_exchange_explicit_8( \ (uint8_t volatile *) (var_), \ (uint8_t) (value_), (memory_order_)) \ : sizeof *(var_) == 2 \ ? kit_atomic_exchange_explicit_16( \ (uint16_t volatile *) (var_), (uint16_t) (value_), \ (memory_order_)) \ : sizeof *(var_) == 4 \ ? kit_atomic_exchange_explicit_32( \ (uint32_t volatile *) (var_), (uint32_t) (value_), \ (memory_order_)) \ : kit_atomic_exchange_explicit_64( \ (uint64_t volatile *) (var_), (uint64_t) (value_), \ (memory_order_)))) # define atomic_fetch_add_explicit(var_, value_, memory_order_) \ (assert(sizeof *(var_) == 1 || sizeof *(var_) == 2 || \ sizeof *(var_) == 4 || sizeof *(var_) == 8), \ (sizeof *(var_) == 1 ? kit_atomic_fetch_add_explicit_8( \ (uint8_t volatile *) (var_), \ (uint8_t) (value_), (memory_order_)) \ : sizeof *(var_) == 2 \ ? kit_atomic_fetch_add_explicit_16( \ (uint16_t volatile *) (var_), (uint16_t) (value_), \ (memory_order_)) \ : sizeof *(var_) == 4 \ ? kit_atomic_fetch_add_explicit_32( \ (uint32_t volatile *) (var_), (uint32_t) (value_), \ (memory_order_)) \ : kit_atomic_fetch_add_explicit_64( \ (uint64_t volatile *) (var_), (uint64_t) (value_), \ (memory_order_)))) #endif #ifndef KIT_DISABLE_SHORT_NAMES # define ATOMIC KIT_ATOMIC #endif #ifdef __cplusplus } #endif #endif /********************************************************************* * * * File: source/kit/mutex.h * * * *********************************************************************/ #ifndef KIT_MUTEX_H #define KIT_MUTEX_H #ifndef KIT_DISABLE_SYSTEM_THREADS # ifndef _GNU_SOURCE # define _GNU_SOURCE # endif # if !defined(_WIN32) || defined(__CYGWIN__) # include # endif # ifdef __cplusplus extern "C" { # endif # if defined(_WIN32) && !defined(__CYGWIN__) typedef struct { void *DebugInfo; long LockCount; long RecursionCount; void *OwningThread; void *LockSemaphore; uintptr_t SpinCount; } mtx_t; # else typedef pthread_mutex_t mtx_t; # endif enum { mtx_plain = 0, mtx_recursive = 1, mtx_timed = 2, }; void mtx_destroy(mtx_t *mtx_); int mtx_init(mtx_t *mtx_, int); int mtx_lock(mtx_t *mtx_); int mtx_timedlock(mtx_t *__restrict mtx_, struct timespec const *__restrict); int mtx_trylock(mtx_t *mtx_); int mtx_unlock(mtx_t *mtx_); # ifdef __cplusplus } # endif #endif #endif /********************************************************************* * * * File: source/kit/condition_variable.h * * * *********************************************************************/ #ifndef KIT_CONDITION_VARIABLE_H #define KIT_CONDITION_VARIABLE_H #ifndef KIT_DISABLE_SYSTEM_THREADS # ifdef __cplusplus extern "C" { # endif # if defined(_WIN32) && !defined(__CYGWIN__) typedef struct { void *Ptr; } cnd_t; typedef struct { volatile uintptr_t status; } once_flag; # else typedef pthread_cond_t cnd_t; typedef pthread_once_t once_flag; # endif void call_once(once_flag *, void (*)(void)); int cnd_broadcast(cnd_t *); void cnd_destroy(cnd_t *); int cnd_init(cnd_t *); int cnd_signal(cnd_t *); int cnd_timedwait(cnd_t *__restrict, mtx_t *__restrict mtx_, struct timespec const *__restrict); int cnd_wait(cnd_t *, mtx_t *mtx_); # ifdef __cplusplus } # endif #endif #endif /********************************************************************* * * * File: source/kit/array_ref.h * * * *********************************************************************/ #ifndef KIT_ARRAY_REF_H #define KIT_ARRAY_REF_H #ifndef _GNU_SOURCE # define _GNU_SOURCE #endif #include #include #ifdef __cplusplus extern "C" { #endif typedef int (*kit_ar_compare_fn)(void *left, void *right); int kit_ar_equal_bytes(ptrdiff_t left_element_size, ptrdiff_t left_size, void *left_data, ptrdiff_t right_element_size, ptrdiff_t right_size, void *right_data); int kit_ar_compare(ptrdiff_t left_element_size, ptrdiff_t left_size, void *left_data, ptrdiff_t right_element_size, ptrdiff_t right_size, void *right_data, kit_ar_compare_fn compare); #define KIT_AR(type_) \ struct { \ ptrdiff_t size; \ type_ *values; \ } #define KIT_AR_WRAP(name_, element_type_, array_) \ struct { \ ptrdiff_t size; \ element_type_ *values; \ } name_ = { .size = (sizeof(array_) / sizeof((array_)[0])), \ .values = (array_) } #define KIT_AR_EQUAL(left_, right_) \ kit_ar_equal_bytes(sizeof((left_).values[0]), (left_).size, \ (left_).values, sizeof((right_).values[0]), \ (right_).size, (right_).values) #define KIT_AR_COMPARE(left_, right_, compare_) \ kit_ar_compare(sizeof((left_).values[0]), (left_).size, \ (left_).values, sizeof((right_).values[0]), \ (right_).size, (right_).values, \ (kit_ar_compare_fn) (compare_)) #ifndef KIT_DISABLE_SHORT_NAMES # define ar_compare_fn kit_ar_compare_fn # define ar_equal_bytes kit_ar_equal_bytes # define ar_compare kit_ar_compare # define AR KIT_AR # define AR_WRAP KIT_AR_WRAP # define AR_EQUAL KIT_AR_EQUAL # define AR_COMPARE KIT_AR_COMPARE #endif #ifdef __cplusplus } #endif #endif /********************************************************************* * * * File: source/kit/string_ref.h * * * *********************************************************************/ #ifndef KIT_STRING_REF_H #define KIT_STRING_REF_H #include #ifdef __cplusplus extern "C" { #endif typedef KIT_AR(char) kit_string_ref_t; typedef kit_string_ref_t kit_str_t; #ifdef __GNUC__ # pragma GCC diagnostic push # pragma GCC diagnostic ignored "-Wunused-function" # pragma GCC diagnostic ignored "-Wunknown-pragmas" # pragma GCC push_options # pragma GCC optimize("O3") #endif static kit_str_t kit_str(ptrdiff_t size, char *static_string) { kit_str_t s = { .size = size, .values = static_string }; return s; } /* Make a barbarian string for C standard library functions. * Not thread safe. * Use with caution. */ static char *kit_make_bs(kit_str_t s) { static char buf[8][4096]; static int index = 0; ptrdiff_t n = s.size; if (n > 4095) n = 4095; memcpy(buf[index], s.values, n); buf[index][n] = '\0'; char *result = buf[index]; index = (index + 1) % 8; return result; } #ifdef __GNUC__ # pragma GCC pop_options # pragma GCC diagnostic pop #endif #define KIT_SZ(static_str_) \ kit_str(sizeof(static_str_) - 1, (static_str_)) #define KIT_WRAP_BS(string_) kit_str(strlen(string_), (string_)) #define KIT_WRAP_STR(string_) \ kit_str((string_).size, (string_).values) #ifndef KIT_DISABLE_SHORT_NAMES # define BS(string_) kit_make_bs(KIT_WRAP_STR(string_)) # define string_ref_t kit_string_ref_t # define str_t kit_str_t # define SZ KIT_SZ # define WRAP_BS KIT_WRAP_BS # define WRAP_STR KIT_WRAP_STR #endif #ifdef __cplusplus } #endif #endif /********************************************************************* * * * File: source/kit/dynamic_array.h * * * *********************************************************************/ #ifndef KIT_DYNAMIC_ARRAY_H #define KIT_DYNAMIC_ARRAY_H #ifdef __cplusplus extern "C" { #endif typedef struct { ptrdiff_t capacity; ptrdiff_t size; void *values; kit_allocator_t *alloc; } kit_da_void_t; void kit_da_init(kit_da_void_t *array, ptrdiff_t element_size, ptrdiff_t size, kit_allocator_t *alloc); void kit_da_resize(kit_da_void_t *array, ptrdiff_t element_size, ptrdiff_t size); void kit_da_resize_exact(kit_da_void_t *array, ptrdiff_t element_size, ptrdiff_t size); /* Dynamic array type definition. */ #define KIT_DA(element_type_) \ struct { \ ptrdiff_t capacity; \ ptrdiff_t size; \ element_type_ *values; \ kit_allocator_t *alloc; \ } /* Initialize dynamic array. */ #define KIT_DA_INIT(array_, size_, alloc_) \ kit_da_init((kit_da_void_t *) &(array_), \ sizeof((array_).values[0]), (size_), (alloc_)) /* Declare and initialize dynamic array. */ #define KIT_DA_CREATE(name_, element_type_, size_) \ KIT_DA(element_type_) name_; \ KIT_DA_INIT(name_, (size_), NULL) /* Destroy dynamic array. */ #define KIT_DA_DESTROY(array_) \ do { \ if ((array_).values != NULL) \ kit_alloc_dispatch((array_).alloc, KIT_DEALLOCATE, 0, 0, \ (array_).values); \ } while (0) /* Resize dynamic array. */ #define KIT_DA_RESIZE(array_, size_) \ kit_da_resize((kit_da_void_t *) &(array_), \ sizeof((array_).values[0]), size_) /* Resize dynamic array with exact capacity. */ #define KIT_DA_RESIZE_EXACT(array_, capacity_) \ kit_da_resize_exact((kit_da_void_t *) &(array_), \ sizeof((array_).values[0]), capacity_) /* Append a value to dynamic array. */ #define KIT_DA_APPEND(array_, value_) \ do { \ ptrdiff_t kit_index_back_ = (array_).size; \ KIT_DA_RESIZE((array_), kit_index_back_ + 1); \ if (kit_index_back_ < (array_).size) \ (array_).values[kit_index_back_] = (value_); \ } while (0) /* Insert a value into dynamic array. */ #define KIT_DA_INSERT(array_, index_, value_) \ do { \ ptrdiff_t kit_i_; \ ptrdiff_t kit_index_back_ = (array_).size; \ ptrdiff_t kit_indert_n_ = (index_); \ KIT_DA_RESIZE((array_), kit_index_back_ + 1); \ if (kit_index_back_ + 1 == (array_).size) { \ for (kit_i_ = kit_index_back_; kit_i_ > kit_indert_n_; \ kit_i_--) \ (array_).values[kit_i_] = (array_).values[kit_i_ - 1]; \ (array_).values[kit_indert_n_] = (value_); \ } \ } while (0) /* Erase a value from dynamic array. */ #define KIT_DA_ERASE(array_, index_) \ do { \ ptrdiff_t i_; \ for (i_ = (index_) + 1; i_ < (array_).size; i_++) \ (array_).values[i_ - 1] = (array_).values[i_]; \ KIT_DA_RESIZE((array_), (array_).size - 1); \ } while (0) typedef KIT_DA(char) kit_string_t; #ifndef KIT_DISABLE_SHORT_NAMES # define da_void_t kit_da_void_t # define da_init kit_da_init # define da_resize kit_da_resize # define string_t kit_string_t # define DA KIT_DA # define DA_INIT KIT_DA_INIT # define DA_CREATE KIT_DA_CREATE # define DA_DESTROY KIT_DA_DESTROY # define DA_RESIZE KIT_DA_RESIZE # define DA_RESIZE_EXACT KIT_DA_RESIZE_EXACT # define DA_APPEND KIT_DA_APPEND # define DA_INSERT KIT_DA_INSERT # define DA_ERASE KIT_DA_ERASE #endif #ifdef __cplusplus } #endif #endif /********************************************************************* * * * File: source/kit/lower_bound.h * * * *********************************************************************/ #ifndef KIT_LOWER_BOUND_H #define KIT_LOWER_BOUND_H #ifdef __cplusplus extern "C" { #endif #define KIT_LOWER_BOUND_INL(return_val, size, ...) \ do { \ ptrdiff_t position_ = 0; \ ptrdiff_t count_ = (size); \ while (count_ > 0) { \ ptrdiff_t const delta_ = count_ / 2; \ ptrdiff_t const index_ = position_ + delta_; \ if (__VA_ARGS__) { \ position_ += delta_ + 1; \ count_ -= delta_ + 1; \ } else \ count_ = delta_; \ } \ (return_val) = position_; \ } while (0) #define KIT_LOWER_BOUND(return_val, array, value, op) \ KIT_LOWER_BOUND_INL(return_val, (array).size, \ (op) ((array).values[index_], (value))) #define KIT_LOWER_BOUND_REF(return_val, array, value, op) \ KIT_LOWER_BOUND_INL(return_val, (array).size, \ (op) ((array).values + index_, (value))) #ifndef KIT_DISABLE_SHORT_NAMES # define LOWER_BOUND_INL KIT_LOWER_BOUND_INL # define LOWER_BOUND KIT_LOWER_BOUND # define LOWER_BOUND_REF KIT_LOWER_BOUND_REF #endif #ifdef __cplusplus } #endif #endif /********************************************************************* * * * File: source/kit/move_back.h * * * *********************************************************************/ #ifndef KIT_MOVE_BACK_H #define KIT_MOVE_BACK_H #ifndef _GNU_SOURCE # define _GNU_SOURCE #endif #include #ifdef __cplusplus extern "C" { #endif #define KIT_MOVE_BACK_INL(new_size, array, ...) \ do { \ ptrdiff_t index_; \ ptrdiff_t end_ = (array).size; \ unsigned char temp_[sizeof *(array).values]; \ for (index_ = 0; index_ < end_;) { \ if (__VA_ARGS__) { \ end_--; \ if (index_ != end_) { \ memcpy(temp_, (array).values + end_, \ sizeof *(array).values); \ (array).values[end_] = (array).values[index_]; \ memcpy((array).values + index_, temp_, \ sizeof *(array).values); \ } \ } else \ index_++; \ } \ (new_size) = end_; \ } while (0) #define KIT_MOVE_BACK(new_size, array, value, cond) \ KIT_MOVE_BACK_INL(new_size, array, \ (cond) ((array).values[index_], (value))) #define KIT_MOVE_BACK_REF(new_size, array, value, cond) \ KIT_MOVE_BACK_INL(new_size, array, \ (cond) ((array).values + index_, (value))) #ifndef KIT_DISABLE_SHORT_NAMES # define MOVE_BACK_INL KIT_MOVE_BACK_INL # define MOVE_BACK KIT_MOVE_BACK # define MOVE_BACK_REF KIT_MOVE_BACK_REF #endif #ifdef __cplusplus } #endif #endif /********************************************************************* * * * File: source/kit/bigint.h * * * *********************************************************************/ #ifndef KIT_BIGINT_H #define KIT_BIGINT_H #include #include #ifdef __cplusplus extern "C" { #endif #ifndef KIT_BIGINT_SIZE # define KIT_BIGINT_SIZE 64 #endif #if __STDC_VERSION__ >= 199901L static_assert(sizeof(uint8_t) == 1, "uint8_t size should be 1 byte"); static_assert(sizeof(uint32_t) == 4, "uint32_t size should be 4 bytes"); static_assert(sizeof(uint64_t) == 8, "uint64_t size should be 8 bytes"); static_assert(KIT_BIGINT_SIZE > 0 && (KIT_BIGINT_SIZE % 8) == 0, "Invalid big integer size"); #endif typedef struct { uint32_t v[KIT_BIGINT_SIZE / 4]; } kit_bigint_t; typedef uint_fast8_t kit_bit_t; #ifdef __GNUC__ # pragma GCC diagnostic push # pragma GCC diagnostic ignored "-Wunused-function" # pragma GCC diagnostic ignored "-Wunknown-pragmas" # pragma GCC push_options # pragma GCC optimize("O3") #endif static kit_bigint_t kit_bi_uint32(uint32_t x) { kit_bigint_t z; memset(&z, 0, sizeof z); z.v[0] = x; return z; } static kit_bigint_t kit_bi_uint64(uint64_t x) { kit_bigint_t z; memset(&z, 0, sizeof z); z.v[0] = (uint32_t) (x & 0xffffffff); z.v[1] = (uint32_t) (x >> 32); return z; } static kit_bigint_t kit_bi_int32(int32_t x) { kit_bigint_t z; memset(&z, x < 0 ? -1 : 0, sizeof z); z.v[0] = x; return z; } static kit_bigint_t kit_bi_int64(int64_t x) { kit_bigint_t z; memset(&z, x < 0 ? -1 : 0, sizeof z); z.v[0] = (uint32_t) (((uint64_t) x) & 0xffffffff); z.v[1] = (uint32_t) (((uint64_t) x) >> 32); return z; } static int kit_bi_is_zero(kit_bigint_t x) { ptrdiff_t i; for (i = 0; i < KIT_BIGINT_SIZE / 4; i++) if (x.v[i] != 0) return 0; return 1; } static int kit_bi_is_neg(kit_bigint_t x) { return (x.v[KIT_BIGINT_SIZE / 4 - 1] & 0x80000000) != 0; } static int kit_bi_equal(kit_bigint_t x, kit_bigint_t y) { return kit_ar_equal_bytes(1, KIT_BIGINT_SIZE, x.v, 1, KIT_BIGINT_SIZE, y.v); } static int kit_bi_compare(kit_bigint_t x, kit_bigint_t y) { ptrdiff_t i; for (i = KIT_BIGINT_SIZE / 4 - 1; i >= 0; i--) if (x.v[i] < y.v[i]) return -1; else if (x.v[i] > y.v[i]) return 1; return 0; } static ptrdiff_t kit_bi_significant_bit_count(kit_bigint_t x) { ptrdiff_t n = KIT_BIGINT_SIZE / 4 - 1; while (n > 0 && x.v[n] == 0) n--; uint32_t val = x.v[n]; if (val == 0) return 0; ptrdiff_t bits = (val & 0x80000000u) != 0 ? 32 : (val & 0x40000000u) != 0 ? 31 : (val & 0x20000000u) != 0 ? 30 : (val & 0x10000000u) != 0 ? 29 : (val & 0x8000000u) != 0 ? 28 : (val & 0x4000000u) != 0 ? 27 : (val & 0x2000000u) != 0 ? 26 : (val & 0x1000000u) != 0 ? 25 : (val & 0x800000u) != 0 ? 24 : (val & 0x400000u) != 0 ? 23 : (val & 0x200000u) != 0 ? 22 : (val & 0x100000u) != 0 ? 21 : (val & 0x80000u) != 0 ? 20 : (val & 0x40000u) != 0 ? 19 : (val & 0x20000u) != 0 ? 18 : (val & 0x10000u) != 0 ? 17 : (val & 0x8000u) != 0 ? 16 : (val & 0x4000u) != 0 ? 15 : (val & 0x2000u) != 0 ? 14 : (val & 0x1000u) != 0 ? 13 : (val & 0x800u) != 0 ? 12 : (val & 0x400u) != 0 ? 11 : (val & 0x200u) != 0 ? 10 : (val & 0x100u) != 0 ? 9 : (val & 0x80u) != 0 ? 8 : (val & 0x40u) != 0 ? 7 : (val & 0x20u) != 0 ? 6 : (val & 0x10u) != 0 ? 5 : (val & 0x08u) != 0 ? 4 : (val & 0x04u) != 0 ? 3 : (val & 0x02u) != 0 ? 2 : 1; return n * 32 + bits; } static kit_bigint_t kit_bi_and(kit_bigint_t x, kit_bigint_t y) { kit_bigint_t z; ptrdiff_t i; for (i = 0; i < KIT_BIGINT_SIZE / 4; i++) z.v[i] = x.v[i] & y.v[i]; return z; } static kit_bigint_t kit_bi_or(kit_bigint_t x, kit_bigint_t y) { kit_bigint_t z; ptrdiff_t i; for (i = 0; i < KIT_BIGINT_SIZE / 4; i++) z.v[i] = x.v[i] | y.v[i]; return z; } static kit_bigint_t kit_bi_xor(kit_bigint_t x, kit_bigint_t y) { kit_bigint_t z; ptrdiff_t i; for (i = 0; i < KIT_BIGINT_SIZE / 4; i++) z.v[i] = x.v[i] ^ y.v[i]; return z; } static kit_bigint_t kit_bi_shl_uint(kit_bigint_t x, uint32_t y) { kit_bigint_t z; memset(&z, 0, sizeof z); ptrdiff_t words = (ptrdiff_t) (y / 32); ptrdiff_t bits = (ptrdiff_t) (y % 32); ptrdiff_t i; for (i = words; i < KIT_BIGINT_SIZE / 4; i++) { z.v[i] |= x.v[i - words] << bits; if (bits != 0 && i + 1 < KIT_BIGINT_SIZE / 4) z.v[i + 1] = x.v[i - words] >> (32 - bits); } return z; } static kit_bigint_t kit_bi_shr_uint(kit_bigint_t x, uint32_t y) { kit_bigint_t z; memset(&z, 0, sizeof z); ptrdiff_t words = (ptrdiff_t) (y / 32); ptrdiff_t bits = (ptrdiff_t) (y % 32); ptrdiff_t i; for (i = KIT_BIGINT_SIZE / 4 - words - 1; i >= 0; i--) { z.v[i] |= x.v[i + words] >> bits; if (bits != 0 && i > 0) z.v[i - 1] = x.v[i + words] << (32 - bits); } return z; } static kit_bit_t kit_bi_carry(uint32_t x, uint32_t y, kit_bit_t carry) { assert(carry == 0 || carry == 1); return 0xffffffffu - x < y || 0xffffffffu - x - y < carry ? 1 : 0; } /* Increment. */ static kit_bigint_t kit_bi_inc(kit_bigint_t x) { kit_bigint_t z; kit_bit_t carry = 1; ptrdiff_t i; for (i = 0; i < KIT_BIGINT_SIZE / 4; i++) { z.v[i] = x.v[i] + carry; carry = kit_bi_carry(x.v[i], 0, carry); } return z; } /* Decrement */ static kit_bigint_t kit_bi_dec(kit_bigint_t x) { kit_bigint_t z; kit_bit_t carry = 0; ptrdiff_t i; for (i = 0; i < KIT_BIGINT_SIZE / 4; i++) { z.v[i] = x.v[i] + 0xffffffff + carry; carry = kit_bi_carry(x.v[i], 0xffffffff, carry); } return z; } /* Addition. */ static kit_bigint_t kit_bi_add(kit_bigint_t x, kit_bigint_t y) { kit_bigint_t z; kit_bit_t carry = 0; ptrdiff_t i; for (i = 0; i < KIT_BIGINT_SIZE / 4; i++) { z.v[i] = x.v[i] + y.v[i] + carry; carry = kit_bi_carry(x.v[i], y.v[i], carry); } return z; } /* Negation. */ static kit_bigint_t kit_bi_neg(kit_bigint_t x) { kit_bigint_t y; kit_bit_t carry = 1; ptrdiff_t i; for (i = 0; i < KIT_BIGINT_SIZE / 4; i++) { y.v[i] = (x.v[i] ^ 0xffffffff) + carry; carry = kit_bi_carry(x.v[i] ^ 0xffffffff, 0, carry); } return y; } /* Subtraction. */ static kit_bigint_t kit_bi_sub(kit_bigint_t x, kit_bigint_t y) { kit_bigint_t z; kit_bit_t carry = 1; ptrdiff_t i; for (i = 0; i < KIT_BIGINT_SIZE / 4; i++) { z.v[i] = x.v[i] + (y.v[i] ^ 0xffffffff) + carry; carry = kit_bi_carry(x.v[i], (y.v[i] ^ 0xffffffff), carry); } return z; } static kit_bigint_t kit_bi_mul_uint32(kit_bigint_t x, uint32_t y) { kit_bigint_t z; ptrdiff_t i, k; memset(&z, 0, sizeof z); if (y != 0) for (i = 0; i < KIT_BIGINT_SIZE / 4; i++) { if (x.v[i] == 0) continue; uint64_t carry = ((uint64_t) x.v[i]) * ((uint64_t) y); for (k = i; k < KIT_BIGINT_SIZE / 4 && carry != 0; k++) { uint64_t sum = ((uint64_t) z.v[k]) + carry; z.v[k] = ((uint32_t) (sum & 0xffffffffull)); carry = sum >> 32; } } return z; } /* Multiplication. */ static kit_bigint_t kit_bi_mul(kit_bigint_t x, kit_bigint_t y) { kit_bigint_t z; ptrdiff_t i, j, k; memset(&z, 0, sizeof z); for (i = 0; i < KIT_BIGINT_SIZE / 4; i++) { if (x.v[i] == 0) continue; for (j = 0; i + j < KIT_BIGINT_SIZE / 4; j++) { if (y.v[j] == 0) continue; uint64_t carry = ((uint64_t) x.v[i]) * ((uint64_t) y.v[j]); for (k = i + j; k < KIT_BIGINT_SIZE / 4 && carry != 0; k++) { uint64_t sum = ((uint64_t) z.v[k]) + carry; z.v[k] = ((uint32_t) (sum & 0xffffffffull)); carry = sum >> 32; } } } return z; } typedef struct { kit_bit_t undefined; kit_bigint_t quotient; kit_bigint_t remainder; } kit_bi_division_t; /* Unsigned division. */ static kit_bi_division_t kit_bi_udiv(kit_bigint_t x, kit_bigint_t y) { kit_bi_division_t z; memset(&z, 0, sizeof z); ptrdiff_t y_bits = kit_bi_significant_bit_count(y); if (y_bits == 0) { z.undefined = 1; return z; } ptrdiff_t x_bits = kit_bi_significant_bit_count(x); ptrdiff_t shift = x_bits - y_bits; z.remainder = x; z.quotient = kit_bi_uint32(0); y = kit_bi_shl_uint(y, (uint32_t) shift); while (shift >= 0) { if (kit_bi_compare(z.remainder, y) >= 0) { z.remainder = kit_bi_sub(z.remainder, y); z.quotient.v[shift / 32] |= (1u << (shift % 32)); } y = kit_bi_shr_uint(y, 1); shift--; } return z; } /* Signed division. * * Remainder is always a non-negative value less than absolute value * of y. */ static kit_bi_division_t kit_bi_div(kit_bigint_t x, kit_bigint_t y) { int x_neg = kit_bi_is_neg(x); int y_neg = kit_bi_is_neg(y); kit_bigint_t x_abs = x_neg ? kit_bi_neg(x) : x; kit_bigint_t y_abs = y_neg ? kit_bi_neg(y) : y; if (x_neg == y_neg) return kit_bi_udiv(x_abs, y_abs); kit_bi_division_t z = kit_bi_udiv(x_abs, y_abs); if (!kit_bi_is_zero(z.remainder) && !y_neg) z.quotient = kit_bi_dec(kit_bi_neg(z.quotient)); else z.quotient = kit_bi_neg(z.quotient); return z; } static void kit_bi_serialize(kit_bigint_t in, uint8_t *out) { ptrdiff_t i; assert(out != NULL); for (i = 0; i < KIT_BIGINT_SIZE / 4; i++) { out[i * 4] = (uint8_t) (in.v[i] & 0xff); out[i * 4 + 1] = (uint8_t) ((in.v[i] >> 8) & 0xff); out[i * 4 + 2] = (uint8_t) ((in.v[i] >> 16) & 0xff); out[i * 4 + 3] = (uint8_t) ((in.v[i] >> 24) & 0xff); } } static kit_bigint_t kit_bi_deserialize(uint8_t *in) { ptrdiff_t i; kit_bigint_t out; assert(in != NULL); memset(&out, 0, sizeof out); for (i = 0; i < KIT_BIGINT_SIZE; i++) out.v[i / 4] |= ((uint32_t) in[i]) << (8 * (i % 4)); return out; } static uint8_t kit_bin_digit(char hex) { assert(hex == '0' || hex == '1'); return hex == '1' ? 1 : 0; } static kit_bigint_t kit_bi_from_bin(kit_str_t bin) { kit_bigint_t z; ptrdiff_t i; memset(&z, 0, sizeof z); for (i = 0; i < bin.size && i / 8 < KIT_BIGINT_SIZE; i++) { uint8_t digit = kit_bin_digit(bin.values[bin.size - i - 1]); z.v[i / 32] |= digit << (i % 32); } return z; } static uint8_t kit_dec_digit(char c) { assert('c' >= '0' && c <= '9'); return c >= '0' && c <= '9' ? (uint8_t) (c - '0') : 0; } static kit_bigint_t kit_bi_from_dec(kit_str_t dec) { kit_bigint_t z = kit_bi_uint32(0); kit_bigint_t factor = kit_bi_uint32(1); ptrdiff_t i; for (i = 0; i < dec.size; i++) { uint32_t digit = kit_dec_digit(dec.values[dec.size - i - 1]); z = kit_bi_add(z, kit_bi_mul_uint32(factor, digit)); factor = kit_bi_mul_uint32(factor, 10); } return z; } static uint8_t kit_hex_digit(char hex) { assert((hex >= '0' && hex <= '9') || (hex >= 'a' && hex <= 'f') || (hex >= 'A' && hex <= 'F')); if (hex >= '0' && hex <= '9') return hex - '0'; if (hex >= 'a' && hex <= 'f') return hex - 'a'; if (hex >= 'A' && hex <= 'F') return hex - 'A'; return 0; } static kit_bigint_t kit_bi_from_hex(kit_str_t hex) { kit_bigint_t z; ptrdiff_t i; memset(&z, 0, sizeof z); for (i = 0; i < hex.size && i / 2 < KIT_BIGINT_SIZE; i++) { uint8_t digit = kit_hex_digit(hex.values[hex.size - i - 1]); z.v[i / 8] |= digit << (4 * (i % 8)); } return z; } static uint8_t KIT_BASE32_DIGITS[] = { ['1'] = 0, ['2'] = 1, ['3'] = 2, ['4'] = 3, ['5'] = 4, ['6'] = 5, ['7'] = 6, ['8'] = 7, ['9'] = 8, ['a'] = 9, ['b'] = 10, ['c'] = 11, ['d'] = 12, ['e'] = 13, ['f'] = 14, ['g'] = 15, ['h'] = 16, ['j'] = 17, ['k'] = 18, ['m'] = 19, ['n'] = 20, ['p'] = 21, ['q'] = 22, ['r'] = 23, ['s'] = 24, ['t'] = 25, ['u'] = 26, ['v'] = 27, ['w'] = 28, ['x'] = 29, ['y'] = 30, ['z'] = 31 }; static uint8_t kit_base32_digit(char c) { assert(c >= '\0' && c < sizeof KIT_BASE32_DIGITS); assert(c == '1' || KIT_BASE32_DIGITS[(size_t) (unsigned char) c] != 0); return c >= '\0' && c < sizeof KIT_BASE32_DIGITS ? KIT_BASE32_DIGITS[(size_t) (unsigned char) c] : 0; } static kit_bigint_t kit_bi_from_base32(kit_str_t base32) { kit_bigint_t z; ptrdiff_t i; memset(&z, 0, sizeof z); for (i = 0; i < base32.size; i++) { z = kit_bi_shl_uint(z, 5 * i); z.v[0] |= kit_base32_digit(base32.values[i]); } return z; } static uint8_t KIT_BASE58_DIGITS[] = { ['1'] = 0, ['2'] = 1, ['3'] = 2, ['4'] = 3, ['5'] = 4, ['6'] = 5, ['7'] = 6, ['8'] = 7, ['9'] = 8, ['A'] = 9, ['B'] = 10, ['C'] = 11, ['D'] = 12, ['E'] = 13, ['F'] = 14, ['G'] = 15, ['H'] = 16, ['J'] = 17, ['K'] = 18, ['L'] = 19, ['M'] = 20, ['N'] = 21, ['P'] = 22, ['Q'] = 23, ['R'] = 24, ['S'] = 25, ['T'] = 26, ['U'] = 27, ['V'] = 28, ['W'] = 29, ['X'] = 30, ['Y'] = 31, ['Z'] = 32, ['a'] = 33, ['b'] = 34, ['c'] = 35, ['d'] = 36, ['e'] = 37, ['f'] = 38, ['g'] = 39, ['h'] = 40, ['i'] = 41, ['j'] = 42, ['k'] = 43, ['m'] = 44, ['n'] = 45, ['o'] = 46, ['p'] = 47, ['q'] = 48, ['r'] = 49, ['s'] = 50, ['t'] = 51, ['u'] = 52, ['v'] = 53, ['w'] = 54, ['x'] = 55, ['y'] = 56, ['z'] = 57 }; static uint8_t kit_base58_digit(char c) { assert(c >= '\0' && c < sizeof KIT_BASE58_DIGITS); assert(c == '1' || KIT_BASE58_DIGITS[(size_t) (unsigned char) c] != 0); return c >= '\0' && c < sizeof KIT_BASE58_DIGITS ? KIT_BASE58_DIGITS[(size_t) (unsigned char) c] : 0; } static kit_bigint_t kit_bi_from_base58(kit_str_t base58) { kit_bigint_t z = kit_bi_uint32(0); kit_bigint_t factor = kit_bi_uint32(1); ptrdiff_t i; for (i = 0; i < base58.size; i++) { uint32_t digit = kit_base58_digit( base58.values[base58.size - i - 1]); z = kit_bi_add(z, kit_bi_mul_uint32(factor, digit)); factor = kit_bi_mul_uint32(factor, 58); } return z; } #ifdef __GNUC__ # pragma GCC pop_options # pragma GCC diagnostic pop #endif #define KIT_BIN(static_str_) \ kit_bi_from_bin(kit_str(sizeof(static_str_) - 1, (static_str_))) #define KIT_DEC(static_str_) \ kit_bi_from_dec(kit_str(sizeof(static_str_) - 1, (static_str_))) #define KIT_HEX(static_str_) \ kit_bi_from_hex(kit_str(sizeof(static_str_) - 1, (static_str_))) #define KIT_BASE32(static_str_) \ kit_bi_from_base32(kit_str(sizeof(static_str_) - 1, (static_str_))) #define KIT_BASE58(static_str_) \ kit_bi_from_base58(kit_str(sizeof(static_str_) - 1, (static_str_))) #ifndef KIT_DISABLE_SHORT_NAMES # define bigint_t kit_bigint_t # define bi_uint32 kit_bi_uint32 # define bi_uint64 kit_bi_uint64 # define bi_int32 kit_bi_int32 # define bi_int64 kit_bi_int64 # define bi_is_zero kit_bi_is_zero # define bi_is_neg kit_bi_is_neg # define bi_equal kit_bi_equal # define bi_compare kit_bi_compare # define bi_carry kit_bi_carry # define bi_inc kit_bi_inc # define bi_dec kit_bi_dec # define bi_add kit_bi_add # define bi_neg kit_bi_neg # define bi_sub kit_bi_sub # define bi_mul kit_bi_mul # define bi_div kit_bi_div # define bi_serialize kit_bi_serialize # define bi_deserialize kit_bi_deserialize # define BIN KIT_BIN # define DEC KIT_DEC # define HEX KIT_HEX # define BASE32 KIT_BASE32 # define BASE58 KIT_BASE58 #endif #ifdef __cplusplus } #endif #endif /********************************************************************* * * * File: source/kit/input_stream.h * * * *********************************************************************/ #ifndef KIT_INPUT_STREAM_H #define KIT_INPUT_STREAM_H #include #ifdef __cplusplus extern "C" { #endif typedef ptrdiff_t (*kit_is_read_fn)(void *state, kit_str_t destination); typedef struct { void *state; kit_is_read_fn read; } kit_is_handle_t; kit_is_handle_t kit_is_wrap_string(kit_str_t string, kit_allocator_t *alloc); kit_is_handle_t kit_is_wrap_file(FILE *f, kit_allocator_t *alloc); void kit_is_destroy(kit_is_handle_t in); #define KIT_IS_WRAP_STRING(string) kit_is_wrap_string((string), NULL) #define KIT_IS_WRAP_FILE(f) kit_is_wrap_file((f), NULL) #define KIT_IS_READ(in, destination) \ (in).read((in).state, (destination)) #ifndef KIT_DISABLE_SHORT_NAMES # define is_read_fn kit_is_read_fn # define is_handle_t kit_is_handle_t # define is_wrap_string kit_is_wrap_string # define is_wrap_file kit_is_wrap_file # define is_destroy kit_is_destroy # define IS_WRAP_STRING KIT_IS_WRAP_STRING # define IS_WRAP_FILE KIT_IS_WRAP_FILE # define IS_READ KIT_IS_READ #endif #ifdef __cplusplus } #endif #endif /********************************************************************* * * * File: source/kit/input_buffer.h * * * *********************************************************************/ #ifndef KIT_INPUT_BUFFER_H #define KIT_INPUT_BUFFER_H #ifdef __cplusplus extern "C" { #endif typedef struct { kit_status_t status; ptrdiff_t offset; void *internal; kit_string_t data; } kit_ib_handle_t; kit_ib_handle_t kit_ib_wrap(kit_is_handle_t upstream, kit_allocator_t *alloc); kit_ib_handle_t kit_ib_read(kit_ib_handle_t buf, ptrdiff_t size); typedef int (*kit_ib_read_condition_fn)(kit_str_t data); kit_ib_handle_t kit_ib_read_while(kit_ib_handle_t buf, kit_ib_read_condition_fn condition); void kit_ib_destroy(kit_ib_handle_t buf); #define KIT_IB_WRAP(upstream) kit_ib_wrap(upstream, NULL) #ifndef KIT_DISABLE_SHORT_NAMES # define ib_handle_t kit_ib_handle_t # define ib_read_condition_fn kit_ib_read_condition_fn # define ib_wrap kit_ib_wrap # define ib_read kit_ib_read # define ib_read_while kit_ib_read_while # define ib_destroy kit_ib_destroy # define IB_WRAP KIT_IB_WRAP #endif #ifdef __cplusplus } #endif #endif /********************************************************************* * * * File: source/kit/async_function.h * * * *********************************************************************/ #ifndef KIT_ASYNC_FUNCTION_H #define KIT_ASYNC_FUNCTION_H #ifndef _GNU_SOURCE # define _GNU_SOURCE #endif #include #include #ifdef __cplusplus extern "C" { #endif #ifdef __GNUC__ # pragma GCC diagnostic push # pragma GCC diagnostic ignored "-Wunused-function" # pragma GCC diagnostic ignored "-Wunknown-pragmas" #endif typedef struct { int _; } kit_af_void; typedef void (*kit_af_state_machine)(void *self_void_); #define KIT_AF_STATE_DATA \ struct { \ int _index; \ ptrdiff_t _id; \ kit_af_state_machine _state_machine; \ } typedef struct { KIT_AF_STATE_DATA; } kit_af_type_void; #define KIT_AF_INTERNAL(coro_) (*((kit_af_type_void *) (coro_))) #ifdef KIT_ENABLE_CUSTOM_ASYNC_FUNCTION_DISPATCH /* Application should implement this function if custom async * function dispatch is enabled. * * See KIT_ENABLE_CUSTOM_ASYNC_FUNCTION_DISPATCH macro. */ void kit_async_function_dispatch(void *promise); #else static void kit_async_function_dispatch(void *promise) { /* Dynamic dispatch by default. */ KIT_AF_INTERNAL(promise)._state_machine(promise); } #endif #ifdef __GNUC__ # pragma GCC diagnostic pop #endif #define KIT_AF_STATE(ret_type_, name_, ...) \ struct name_##_coro_state_ { \ KIT_AF_STATE_DATA; \ ret_type_ return_value; \ __VA_ARGS__ \ } #define KIT_AF_DECL(name_) void name_(void *self_void_) #define KIT_CORO_IMPL(name_) \ KIT_AF_DECL(name_) { \ struct name_##_coro_state_ *self = \ (struct name_##_coro_state_ *) self_void_; \ switch (self->_index) { \ case 0:; #define KIT_AF_LINE_() __LINE__ #define KIT_CORO_END \ } \ self->_index = -1; \ } #define KIT_CORO_DECL(ret_type_, name_, ...) \ KIT_AF_STATE(ret_type_, name_, __VA_ARGS__); \ KIT_AF_DECL(name_) #define KIT_CORO(ret_type_, name_, ...) \ KIT_AF_STATE(ret_type_, name_, __VA_ARGS__); \ KIT_CORO_IMPL(name_) #define KIT_CORO_DECL_VOID(name_, ...) \ KIT_CORO_DECL(kit_af_void, name_, __VA_ARGS__) #define KIT_CORO_VOID(name_, ...) \ KIT_CORO(kit_af_void, name_, __VA_ARGS__) #define KIT_STATIC_CORO(ret_type_, name_, ...) \ KIT_AF_STATE(ret_type_, name_, __VA_ARGS__); \ static KIT_CORO_IMPL(name_) #define KIT_STATIC_CORO_VOID(name_, ...) \ KIT_STATIC_CORO(kit_af_void, name_, __VA_ARGS__) #define KIT_AF_EXECUTE(promise_) \ kit_async_function_dispatch(&(promise_)) #define KIT_AF_NEXT(promise_) \ (kit_async_function_dispatch(&(promise_)), (promise_).return_value) #define KIT_AF_YIELD(...) \ do { \ self->_index = KIT_AF_LINE_(); \ self->return_value = __VA_ARGS__; \ return; \ case KIT_AF_LINE_():; \ } while (0) #define KIT_AF_YIELD_VOID \ do { \ self->_index = KIT_AF_LINE_(); \ return; \ case KIT_AF_LINE_():; \ } while (0) #define KIT_AF_RETURN(...) \ do { \ self->_index = -1; \ self->return_value = __VA_ARGS__; \ return; \ } while (0) #define KIT_AF_RETURN_VOID \ do { \ self->_index = -1; \ return; \ } while (0) #define KIT_AF_AWAIT(promise_) \ do { \ case KIT_AF_LINE_(): \ if ((promise_)._index != -1) { \ self->_index = KIT_AF_LINE_(); \ kit_async_function_dispatch(&(promise_)); \ } \ if ((promise_)._index != -1) \ return; \ } while (0) #define KIT_AF_YIELD_AWAIT(promise_) \ do { \ case KIT_AF_LINE_(): \ if ((promise_)._index != -1) { \ self->_index = KIT_AF_LINE_(); \ kit_async_function_dispatch(&(promise_)); \ self->return_value = (promise_).return_value; \ return; \ } \ } while (0) #define KIT_AF_TYPE(coro_) struct coro_##_coro_state_ #define KIT_AF_INITIAL(id_, coro_) \ ._index = 0, ._id = (id_), ._state_machine = (coro_) #define KIT_AF_CREATE(promise_, coro_, ...) \ KIT_AF_TYPE(coro_) \ promise_ = { KIT_AF_INITIAL(0, coro_), __VA_ARGS__ } #define KIT_AF_CREATE_ID(promise_, id_, ...) \ KIT_AF_TYPE(coro_) \ promise_ = { KIT_AF_INITIAL(id_, NULL), __VA_ARGS__ } #define KIT_AF_INIT(promise_, coro_, ...) \ do { \ KIT_AF_CREATE(kit_af_temp_, coro_, __VA_ARGS__); \ memcpy(&(promise_), &kit_af_temp_, sizeof kit_af_temp_); \ } while (0) #define KIT_AF_INIT_ID(promise_, id_, ...) \ do { \ KIT_AF_CREATE_ID(kit_af_temp_, id_, __VA_ARGS__); \ memcpy(&(promise_), &kit_af_temp_, sizeof kit_af_temp_); \ } while (0) #define KIT_AF_FINISHED(promise_) ((promise_)._index == -1) #define KIT_AF_FINISHED_N(return_, promises_, size_) \ do { \ int kit_af_index_; \ (return_) = 1; \ for (kit_af_index_ = 0; kit_af_index_ < (size_); \ kit_af_index_++) \ if (!KIT_AF_FINISHED((promises_)[kit_af_index_])) { \ (return_) = 0; \ break; \ } \ } while (0) #define KIT_AF_FINISHED_ALL(return_, promises_) \ KIT_AF_FINISHED_N((return_), (promises_), \ sizeof(promises_) / sizeof((promises_)[0])) #ifndef KIT_DISABLE_SHORT_NAMES # define af_void kit_af_void # define af_state_machine kit_af_state_machine # define af_type_void kit_af_type_void # define AF_STATE_DATA KIT_AF_STATE_DATA # define AF_STATE KIT_AF_STATE # define AF_DECL KIT_AF_DECL # define CORO_IMPL KIT_CORO_IMPL # define CORO_END KIT_CORO_END # define CORO_DECL KIT_CORO_DECL # define CORO KIT_CORO # define CORO_DECL_VOID KIT_CORO_DECL_VOID # define STATIC_CORO KIT_STATIC_CORO # define STATIC_CORO_VOID KIT_STATIC_CORO_VOID # define CORO_VOID KIT_CORO_VOID # define AF_EXECUTE KIT_AF_EXECUTE # define AF_NEXT KIT_AF_NEXT # define AF_YIELD KIT_AF_YIELD # define AF_YIELD_VOID KIT_AF_YIELD_VOID # define AF_RETURN KIT_AF_RETURN # define AF_RETURN_VOID KIT_AF_RETURN_VOID # define AF_AWAIT KIT_AF_AWAIT # define AF_YIELD_AWAIT KIT_AF_YIELD_AWAIT # define AF_TYPE KIT_AF_TYPE # define AF_INITIAL KIT_AF_INITIAL # define AF_CREATE KIT_AF_CREATE # define AF_INIT KIT_AF_INIT # define AF_FINISHED KIT_AF_FINISHED # define AF_FINISHED_N KIT_AF_FINISHED_N # define AF_FINISHED_ALL KIT_AF_FINISHED_ALL #endif #ifdef __cplusplus } #endif #endif /********************************************************************* * * * File: source/kit/file.h * * * *********************************************************************/ #ifndef KIT_FILE_H #define KIT_FILE_H #ifdef __cplusplus extern "C" { #endif #if defined(_WIN32) && !defined(__CYGWIN__) # define KIT_PATH_DELIM_C '\\' # define KIT_PATH_DELIM "\\" # define KIT_ENV_HOME "USERPROFILE" #else # define KIT_PATH_DELIM_C '/' # define KIT_PATH_DELIM "/" # define KIT_ENV_HOME "HOME" #endif kit_string_t kit_path_norm(kit_str_t path, kit_allocator_t *alloc); kit_string_t kit_path_join(kit_str_t left, kit_str_t right, kit_allocator_t *alloc); kit_string_t kit_path_user(kit_allocator_t *alloc); kit_string_t kit_path_cache(kit_allocator_t *alloc); kit_str_t kit_path_index(kit_str_t path, ptrdiff_t index); kit_str_t kit_path_take(kit_str_t path, ptrdiff_t count); kit_status_t kit_file_create_folder(kit_str_t path); kit_status_t kit_file_create_folder_recursive(kit_str_t path); kit_status_t kit_file_remove(kit_str_t path); kit_status_t kit_file_remove_folder(kit_str_t path); kit_status_t kit_file_remove_recursive(kit_str_t path, kit_allocator_t *alloc); typedef enum { KIT_PATH_NONE, KIT_PATH_FILE, KIT_PATH_FOLDER } kit_path_type_t; kit_path_type_t kit_path_type(kit_str_t path); typedef struct { kit_status_t status; int64_t time_modified_sec; int32_t time_modified_nsec; int64_t size; } kit_file_info_t; kit_file_info_t kit_file_info(kit_str_t path); typedef struct { kit_status_t status; KIT_DA(kit_string_t) files; } kit_path_list_t; kit_path_list_t kit_file_enum_folder(kit_str_t path, kit_allocator_t *alloc); void kit_path_list_destroy(kit_path_list_t list); #ifndef KIT_DISABLE_SHORT_NAMES # define path_norm kit_path_norm # define path_join kit_path_join # define path_user kit_path_user # define path_cache kit_path_cache # define path_index kit_path_index # define path_take kit_path_take # define file_create_folder kit_file_create_folder # define file_create_folder_recursive \ kit_file_create_folder_recursive # define file_remove kit_file_remove # define file_remove_folder kit_file_remove_folder # define file_remove_recursive kit_file_remove_recursive # define path_type_t kit_path_type_t # define path_type kit_path_type # define file_info_t kit_file_info_t # define file_info kit_file_info # define path_list_t kit_path_list_t # define file_enum_folder kit_file_enum_folder # define path_list_destroy kit_path_list_destroy # define PATH_DELIM_C KIT_PATH_DELIM_C # define PATH_DELIM KIT_PATH_DELIM # define ENV_HOME KIT_ENV_HOME # define PATH_NONE KIT_PATH_NONE # define PATH_FILE KIT_PATH_FILE # define PATH_FOLDER KIT_PATH_FOLDER #endif #ifdef __cplusplus } #endif #endif /********************************************************************* * * * File: source/kit/mersenne_twister_64.h * * * *********************************************************************/ #ifndef KIT_MERSENNE_TWISTER_64_H #define KIT_MERSENNE_TWISTER_64_H #ifndef _GNU_SOURCE # define _GNU_SOURCE #endif #include #include #ifdef __cplusplus extern "C" { #endif enum { KIT_MT64_N = 312, }; typedef struct { uint64_t mt[KIT_MT64_N]; uint64_t index; } kit_mt64_state_t; void kit_mt64_init_array(kit_mt64_state_t *state, ptrdiff_t size, uint64_t *seed); void kit_mt64_init(kit_mt64_state_t *state, uint64_t seed); void kit_mt64_rotate(kit_mt64_state_t *state); uint64_t kit_mt64_generate(kit_mt64_state_t *state); #ifndef KIT_DISABLE_SHORT_NAMES # define mt64_state_t kit_mt64_state_t # define mt64_init_array kit_mt64_init_array # define mt64_init kit_mt64_init # define mt64_rotate kit_mt64_rotate # define mt64_generate kit_mt64_generate #endif #ifdef __cplusplus } #endif #endif /********************************************************************* * * * File: source/kit/secure_random.h * * * *********************************************************************/ #ifndef KIT_SECURE_RANDOM_H #define KIT_SECURE_RANDOM_H #ifndef _GNU_SOURCE # define _GNU_SOURCE #endif #include #include #ifdef __cplusplus extern "C" { #endif void kit_secure_random(ptrdiff_t size, void *data); #ifndef KIT_DISABLE_SHORT_NAMES # define secure_random kit_secure_random #endif #ifdef __cplusplus } #endif #endif /********************************************************************* * * * File: source/kit/sha256.h * * * *********************************************************************/ #ifndef KIT_SHA256_H #define KIT_SHA256_H #ifndef _GNU_SOURCE # define _GNU_SOURCE #endif #include #include #ifdef __cplusplus extern "C" { #endif enum { KIT_SHA256_BLOCK_SIZE = 32 }; typedef struct { uint8_t v[KIT_SHA256_BLOCK_SIZE]; } kit_sha256_hash_t; kit_sha256_hash_t kit_sha256(ptrdiff_t size, uint8_t *data); #ifdef __cplusplus } #endif #ifndef KIT_DISABLE_SHORT_NAMES # define SHA256_BLOCK_SIZE KIT_SHA256_BLOCK_SIZE # define sha256_hash_t kit_sha256_hash_t # define sha256 kit_sha256 #endif #endif /********************************************************************* * * * File: source/kit/sockets.h * * * *********************************************************************/ #ifndef KIT_SOCKETS_H #define KIT_SOCKETS_H #ifndef _GNU_SOURCE # define _GNU_SOURCE #endif #ifndef KIT_DISABLE_SYSTEM_SOCKETS # ifdef __GNUC__ # pragma GCC diagnostic push # pragma GCC diagnostic ignored "-Wunused-function" # pragma GCC diagnostic ignored "-Wunknown-pragmas" # endif # if defined(_WIN32) && !defined(__CYGWIN__) # define WIN32_LEAN_AND_MEAN # include # include # define socket_t SOCKET # define socklen_t int # ifdef __cplusplus extern "C" { # endif static kit_status_t kit_sockets_init(void) { WSADATA data; memset(&data, 0, sizeof data); WORD version = MAKEWORD(2, 2); return WSAStartup(version, &data) == ERROR_SUCCESS ? KIT_OK : KIT_ERROR_SOCKETS_STARTUP_FAILED; } static kit_status_t kit_sockets_cleanup(void) { WSACleanup(); return KIT_OK; } static int kit_socket_set_blocking(socket_t s) { u_long flag = 0; return ioctlsocket(s, FIONBIO, &flag) == 0 ? KIT_OK : KIT_ERROR_SOCKET_CONTROL_FAILED; } static int kit_socket_set_nonblocking(socket_t s) { u_long flag = 1; return ioctlsocket(s, FIONBIO, &flag) == 0 ? KIT_OK : KIT_ERROR_SOCKET_CONTROL_FAILED; } # ifdef __cplusplus } # endif # else # include # include # include # include # include # include # include # include # include # include # define socket_t int # define closesocket close # define INVALID_SOCKET -1 # ifdef __cplusplus extern "C" { # endif static kit_status_t kit_sockets_init(void) { signal(SIGPIPE, SIG_IGN); return KIT_OK; } static kit_status_t kit_sockets_cleanup(void) { return KIT_OK; } static int kit_socket_set_blocking(socket_t s) { int const flags = fcntl(s, F_GETFL, 0); return fcntl(s, F_SETFL, flags & ~O_NONBLOCK) == 0 ? KIT_OK : KIT_ERROR_SOCKET_CONTROL_FAILED; } static int kit_socket_set_nonblocking(socket_t s) { int const flags = fcntl(s, F_GETFL, 0); return fcntl(s, F_SETFL, flags | O_NONBLOCK) == 0 ? KIT_OK : KIT_ERROR_SOCKET_CONTROL_FAILED; } # ifdef __cplusplus } # endif # endif # ifdef __GNUC__ # pragma GCC diagnostic pop # endif #endif #endif #ifdef KIT_IMPLEMENTATION /********************************************************************* * * * File: source/kit/allocator.c * * * *********************************************************************/ #include #include #ifndef KIT_DISABLE_SYSTEM_MALLOC # include # include #endif static void *kit_allocate_default_(int request, ptrdiff_t size, ptrdiff_t previous_size, void *pointer) { #ifndef KIT_DISABLE_SYSTEM_MALLOC switch (request) { case KIT_ALLOCATE: case KIT_ALLOCATE_ZERO: { assert(size >= 0); assert(previous_size == 0); assert(pointer == NULL); if (size <= 0) return NULL; void *p = malloc(size); if (p != NULL && request == KIT_ALLOCATE_ZERO) memset(p, 0, size); return p; } case KIT_REALLOCATE: case KIT_REALLOCATE_ZERO: { assert(size >= 0); assert(previous_size != 0 || pointer == NULL); assert(previous_size == 0 || pointer != NULL); if (previous_size == 0 && pointer != NULL) return NULL; if (previous_size != 0 && pointer == NULL) return NULL; if (size == previous_size) return pointer; uint8_t *p = NULL; if (size > 0) { p = (uint8_t *) malloc(size); if (p != NULL) { if (size > 0 && previous_size > 0) memcpy(p, pointer, size < previous_size ? size : previous_size); if (request == KIT_REALLOCATE_ZERO && size > previous_size) memset(p + previous_size, 0, size - previous_size); } } free(pointer); return p; } case KIT_DEALLOCATE: assert(size == 0); assert(pointer != NULL); if (pointer != NULL) free(pointer); return NULL; case KIT_DEALLOCATE_ALL: // Do nothing. // return NULL; default:; } #endif assert(0); return NULL; } static void *kit_allocate_from_buffer_(kit_allocator_t *alloc, int request, ptrdiff_t size, ptrdiff_t previous_size, void *pointer) { assert(alloc != NULL); assert(pointer == NULL || pointer < alloc->data); if (alloc == NULL) return NULL; switch (request) { case KIT_ALLOCATE: case KIT_ALLOCATE_ZERO: { assert(size >= 0); assert(previous_size == 0); assert(pointer == NULL); if (size <= 0) return NULL; if (alloc->size < size) return NULL; void *p = alloc->data; alloc->bytes += size; alloc->size -= size; if (request == KIT_ALLOCATE_ZERO) memset(p, 0, size); return p; } case KIT_REALLOCATE: case KIT_REALLOCATE_ZERO: { assert(size >= 0); assert(previous_size != 0 || pointer == NULL); assert(previous_size == 0 || pointer != NULL); if (size <= 0) return NULL; if (size <= previous_size) return pointer; if (previous_size == 0 && pointer != NULL) return NULL; if (previous_size != 0 && pointer == NULL) return NULL; if ((uint8_t *) pointer + previous_size == alloc->data) { if (alloc->size < size - previous_size) return NULL; alloc->bytes += size - previous_size; alloc->size -= size - previous_size; return pointer; } if (alloc->size < size) return NULL; uint8_t *p = alloc->bytes; alloc->bytes += size; alloc->size -= size; if (previous_size > 0) memcpy(p, pointer, previous_size); if (request == KIT_REALLOCATE_ZERO) memset(p + previous_size, 0, size - previous_size); return p; } case KIT_DEALLOCATE: case KIT_DEALLOCATE_ALL: return NULL; default:; } assert(0); return NULL; } #ifndef KIT_ENABLE_CUSTOM_ALLOC_DISPATCH void *kit_alloc_dispatch(kit_allocator_t *alloc, int request, ptrdiff_t size, ptrdiff_t previous_size, void *pointer) { if (alloc == NULL) return kit_allocate_default_(request, size, previous_size, pointer); switch (alloc->type) { case KIT_ALLOC_TYPE_DEFAULT: return kit_allocate_default_(request, size, previous_size, pointer); case KIT_ALLOC_TYPE_BUFFER: return kit_allocate_from_buffer_(alloc, request, size, previous_size, pointer); default:; } return NULL; } #endif kit_allocator_t kit_alloc_default(void) { kit_allocator_t alloc = { .type = KIT_ALLOC_TYPE_DEFAULT, .size = 0, .data = NULL }; return alloc; } kit_allocator_t kit_alloc_buffer(ptrdiff_t size, void *buffer) { kit_allocator_t alloc = { .type = KIT_ALLOC_TYPE_BUFFER, .size = size, .data = buffer }; return alloc; } /********************************************************************* * * * File: source/kit/thread.posix.c * * * *********************************************************************/ #ifndef KIT_DISABLE_SYSTEM_THREADS # if !defined(_WIN32) || defined(__CYGWIN__) # include # include # include # include # include /* intptr_t */ # include # include # ifndef PTHREAD_STACK_MIN # define PTHREAD_STACK_MIN 16384 # endif /* Configuration macro: EMULATED_THREADS_USE_NATIVE_TIMEDLOCK Use pthread_mutex_timedlock() for `mtx_timedlock()' Otherwise use mtx_trylock() + *busy loop* emulation. */ # if !defined(__CYGWIN__) && !defined(__APPLE__) && \ !defined(__NetBSD__) # define EMULATED_THREADS_USE_NATIVE_TIMEDLOCK # endif /* Implementation limits: - Conditionally emulation for "mutex with timeout" (see EMULATED_THREADS_USE_NATIVE_TIMEDLOCK macro) */ typedef struct { thrd_start_t func; void *arg; } impl_thrd_param_t; static void *impl_thrd_routine(void *p) { impl_thrd_param_t pack = *((impl_thrd_param_t *) p); kit_alloc_dispatch(NULL, KIT_DEALLOCATE, 0, 0, p); return (void *) (intptr_t) pack.func(pack.arg); } void call_once(once_flag *flag, void (*func)(void)) { pthread_once(flag, func); } int cnd_broadcast(cnd_t *cond) { assert(cond != NULL); return (pthread_cond_broadcast(cond) == 0) ? thrd_success : thrd_error; } void cnd_destroy(cnd_t *cond) { assert(cond); pthread_cond_destroy(cond); } int cnd_init(cnd_t *cond) { assert(cond != NULL); return (pthread_cond_init(cond, NULL) == 0) ? thrd_success : thrd_error; } int cnd_signal(cnd_t *cond) { assert(cond != NULL); return (pthread_cond_signal(cond) == 0) ? thrd_success : thrd_error; } int cnd_timedwait(cnd_t *cond, mtx_t *mtx, struct timespec const *abs_time) { int rt; assert(mtx != NULL); assert(cond != NULL); assert(abs_time != NULL); rt = pthread_cond_timedwait(cond, mtx, abs_time); if (rt == ETIMEDOUT) return thrd_timedout; return (rt == 0) ? thrd_success : thrd_error; } int cnd_wait(cnd_t *cond, mtx_t *mtx) { assert(mtx != NULL); assert(cond != NULL); return (pthread_cond_wait(cond, mtx) == 0) ? thrd_success : thrd_error; } void mtx_destroy(mtx_t *mtx) { assert(mtx != NULL); pthread_mutex_destroy(mtx); } /* * XXX: Workaround when building with -O0 and without pthreads link. * * In such cases constant folding and dead code elimination won't be * available, thus the compiler will always add the pthread_mutexattr* * functions into the binary. As we try to link, we'll fail as the * symbols are unresolved. * * Ideally we'll enable the optimisations locally, yet that does not * seem to work. * * So the alternative workaround is to annotate the symbols as weak. * Thus the linker will be happy and things don't clash when building * with -O1 or greater. */ # if defined(KIT_HAVE_FUNC_ATTRIBUTE_WEAK) && !defined(__CYGWIN__) __attribute__((weak)) int pthread_mutexattr_init( pthread_mutexattr_t *attr); __attribute__((weak)) int pthread_mutexattr_settype( pthread_mutexattr_t *attr, int type); __attribute__((weak)) int pthread_mutexattr_destroy( pthread_mutexattr_t *attr); # endif int mtx_init(mtx_t *mtx, int type) { # ifdef KIT_HAVE_PTHREAD_MUTEXATTR_SETTYPE pthread_mutexattr_t attr; # endif assert(mtx != NULL); if (type != mtx_plain && type != mtx_timed && type != (mtx_plain | mtx_recursive) && type != (mtx_timed | mtx_recursive)) return thrd_error; if ((type & mtx_recursive) == 0) { pthread_mutex_init(mtx, NULL); return thrd_success; } # ifdef KIT_HAVE_PTHREAD_MUTEXATTR_SETTYPE pthread_mutexattr_init(&attr); pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE); pthread_mutex_init(mtx, &attr); pthread_mutexattr_destroy(&attr); return thrd_success; # else return thrd_error; # endif } int mtx_lock(mtx_t *mtx) { assert(mtx != NULL); return (pthread_mutex_lock(mtx) == 0) ? thrd_success : thrd_error; } int mtx_timedlock(mtx_t *mtx, const struct timespec *ts) { assert(mtx != NULL); assert(ts != NULL); { # ifdef EMULATED_THREADS_USE_NATIVE_TIMEDLOCK int rt; rt = pthread_mutex_timedlock(mtx, ts); if (rt == 0) return thrd_success; return (rt == ETIMEDOUT) ? thrd_timedout : thrd_error; # else time_t expire = time(NULL); expire += ts->tv_sec; while (mtx_trylock(mtx) != thrd_success) { time_t now = time(NULL); if (expire < now) return thrd_timedout; // busy loop! thrd_yield(); } return thrd_success; # endif } } int mtx_trylock(mtx_t *mtx) { assert(mtx != NULL); return (pthread_mutex_trylock(mtx) == 0) ? thrd_success : thrd_busy; } int mtx_unlock(mtx_t *mtx) { assert(mtx != NULL); return (pthread_mutex_unlock(mtx) == 0) ? thrd_success : thrd_error; } int thrd_create_with_stack(thrd_t *thr, thrd_start_t func, void *arg, ptrdiff_t const require_stack_size) { impl_thrd_param_t *pack; assert(thr != NULL); assert(require_stack_size == 0 || require_stack_size >= PTHREAD_STACK_MIN); pthread_attr_t attr; pthread_attr_t *attr_p = NULL; if (require_stack_size > 0) { ptrdiff_t const page_size = (ptrdiff_t) sysconf(_SC_PAGESIZE); ptrdiff_t const delta = require_stack_size % page_size; ptrdiff_t const stack_size = delta == 0 ? require_stack_size : require_stack_size + page_size - delta; if (pthread_attr_init(&attr) != 0) return thrd_nomem; if (pthread_attr_setstacksize(&attr, (size_t) stack_size) != 0) return thrd_wrong_stack_size; attr_p = &attr; } pack = (impl_thrd_param_t *) kit_alloc_dispatch( NULL, KIT_ALLOCATE, sizeof(impl_thrd_param_t), 0, NULL); if (!pack) { if (attr_p) pthread_attr_destroy(attr_p); return thrd_nomem; } pack->func = func; pack->arg = arg; if (pthread_create(thr, attr_p, impl_thrd_routine, pack) != 0) { kit_alloc_dispatch(NULL, KIT_DEALLOCATE, 0, 0, pack); if (attr_p) pthread_attr_destroy(attr_p); return thrd_error; } if (attr_p) pthread_attr_destroy(attr_p); return thrd_success; } int thrd_create(thrd_t *thr, thrd_start_t func, void *arg) { return thrd_create_with_stack(thr, func, arg, 0); } thrd_t thrd_current(void) { return pthread_self(); } int thrd_detach(thrd_t thr) { return (pthread_detach(thr) == 0) ? thrd_success : thrd_error; } int thrd_equal(thrd_t thr0, thrd_t thr1) { return pthread_equal(thr0, thr1); } _Noreturn void thrd_exit(int res) { pthread_exit((void *) (intptr_t) res); } int thrd_join(thrd_t thr, int *res) { void *code; if (pthread_join(thr, &code) != 0) return thrd_error; if (res) *res = (int) (intptr_t) code; return thrd_success; } int thrd_sleep(const struct timespec *time_point, struct timespec *remaining) { assert(time_point != NULL); return nanosleep(time_point, remaining); } void thrd_yield(void) { sched_yield(); } # endif #endif /********************************************************************* * * * File: source/kit/thread.win32.c * * * *********************************************************************/ #ifndef KIT_DISABLE_SYSTEM_THREADS # if defined(_WIN32) && !defined(__CYGWIN__) # include # include # include # include # include # include # ifndef WIN32_LEAN_AND_MEAN # define WIN32_LEAN_AND_MEAN 1 # endif # include /* Configuration macro: EMULATED_THREADS_USE_NATIVE_CALL_ONCE Use native WindowsAPI one-time initialization function. (requires WinVista or later) Otherwise emulate by mtx_trylock() + *busy loop* for WinXP. EMULATED_THREADS_TSS_DTOR_SLOTNUM Max registerable TSS dtor number. */ # if _WIN32_WINNT >= 0x0600 /* Prefer native WindowsAPI on newer environment. */ # if !defined(__MINGW32__) # define EMULATED_THREADS_USE_NATIVE_CALL_ONCE # endif # endif # define EMULATED_THREADS_TSS_DTOR_SLOTNUM \ 64 /* see TLS_MINIMUM_AVAILABLE */ /* check configuration */ # if defined(EMULATED_THREADS_USE_NATIVE_CALL_ONCE) && \ (_WIN32_WINNT < 0x0600) # error EMULATED_THREADS_USE_NATIVE_CALL_ONCE requires _WIN32_WINNT>=0x0600 # endif static_assert(sizeof(cnd_t) == sizeof(CONDITION_VARIABLE), "The size of cnd_t must equal to CONDITION_VARIABLE"); static_assert(sizeof(thrd_t) == sizeof(HANDLE), "The size of thrd_t must equal to HANDLE"); static_assert(sizeof(tss_t) == sizeof(DWORD), "The size of tss_t must equal to DWORD"); static_assert(sizeof(mtx_t) == sizeof(CRITICAL_SECTION), "The size of mtx_t must equal to CRITICAL_SECTION"); static_assert(sizeof(once_flag) == sizeof(INIT_ONCE), "The size of once_flag must equal to INIT_ONCE"); /* Implementation limits: - Conditionally emulation for "Initialization functions" (see EMULATED_THREADS_USE_NATIVE_CALL_ONCE macro) - Emulated `mtx_timelock()' with mtx_trylock() + *busy loop* */ typedef struct { thrd_start_t func; void *arg; thrd_t thrd; } impl_thrd_param_t; struct thrd_state { thrd_t thrd; bool handle_need_close; }; static thread_local struct thrd_state impl_current_thread = { 0 }; static unsigned __stdcall impl_thrd_routine(void *p) { impl_thrd_param_t *pack_p = (impl_thrd_param_t *) p; impl_thrd_param_t pack; int code; impl_current_thread.thrd = pack_p->thrd; impl_current_thread.handle_need_close = false; memcpy(&pack, pack_p, sizeof(impl_thrd_param_t)); kit_alloc_dispatch(NULL, KIT_DEALLOCATE, 0, 0, p); code = pack.func(pack.arg); return (unsigned) code; } static time_t impl_timespec2msec(const struct timespec *ts) { return (ts->tv_sec * 1000U) + (ts->tv_nsec / 1000000L); } static DWORD impl_abs2relmsec(const struct timespec *abs_time) { const time_t abs_ms = impl_timespec2msec(abs_time); struct timespec now; timespec_get(&now, TIME_UTC); const time_t now_ms = impl_timespec2msec(&now); const DWORD rel_ms = (abs_ms > now_ms) ? (DWORD) (abs_ms - now_ms) : 0; return rel_ms; } # ifdef EMULATED_THREADS_USE_NATIVE_CALL_ONCE struct impl_call_once_param { void (*func)(void); }; static BOOL CALLBACK impl_call_once_callback(PINIT_ONCE InitOnce, PVOID Parameter, PVOID *Context) { struct impl_call_once_param *param = (struct impl_call_once_param *) Parameter; (param->func)(); ((void) InitOnce); ((void) Context); /* suppress warning */ return TRUE; } # endif /* ifdef EMULATED_THREADS_USE_NATIVE_CALL_ONCE */ static struct impl_tss_dtor_entry { tss_t key; tss_dtor_t dtor; } impl_tss_dtor_tbl[EMULATED_THREADS_TSS_DTOR_SLOTNUM]; static int impl_tss_dtor_register(tss_t key, tss_dtor_t dtor) { int i; for (i = 0; i < EMULATED_THREADS_TSS_DTOR_SLOTNUM; i++) { if (!impl_tss_dtor_tbl[i].dtor) break; } if (i == EMULATED_THREADS_TSS_DTOR_SLOTNUM) return 1; impl_tss_dtor_tbl[i].key = key; impl_tss_dtor_tbl[i].dtor = dtor; return 0; } static void impl_tss_dtor_invoke(void) { int i; for (i = 0; i < EMULATED_THREADS_TSS_DTOR_SLOTNUM; i++) { if (impl_tss_dtor_tbl[i].dtor) { void *val = (void *) (size_t) TlsGetValue( impl_tss_dtor_tbl[i].key); if (val) (impl_tss_dtor_tbl[i].dtor)(val); } } } void call_once(once_flag *flag, void (*func)(void)) { assert(flag && func); # ifdef EMULATED_THREADS_USE_NATIVE_CALL_ONCE { struct impl_call_once_param param; param.func = func; InitOnceExecuteOnce((PINIT_ONCE) flag, impl_call_once_callback, (PVOID) ¶m, NULL); } # else if (InterlockedCompareExchangePointer( (PVOID volatile *) &flag->status, (PVOID) 1, (PVOID) 0) == 0) { (func)(); InterlockedExchangePointer((PVOID volatile *) &flag->status, (PVOID) 2); } else { while (flag->status == 1) { // busy loop! thrd_yield(); } } # endif } int cnd_broadcast(cnd_t *cond) { assert(cond != NULL); WakeAllConditionVariable((PCONDITION_VARIABLE) cond); return thrd_success; } void cnd_destroy(cnd_t *cond) { assert(cond != NULL); /* do nothing */ (void) cond; } int cnd_init(cnd_t *cond) { assert(cond != NULL); InitializeConditionVariable((PCONDITION_VARIABLE) cond); return thrd_success; } int cnd_signal(cnd_t *cond) { assert(cond != NULL); WakeConditionVariable((PCONDITION_VARIABLE) cond); return thrd_success; } int cnd_timedwait(cnd_t *cond, mtx_t *mtx, const struct timespec *abs_time) { assert(cond != NULL); assert(mtx != NULL); assert(abs_time != NULL); const DWORD timeout = impl_abs2relmsec(abs_time); if (SleepConditionVariableCS((PCONDITION_VARIABLE) cond, (PCRITICAL_SECTION) mtx, timeout)) return thrd_success; return (GetLastError() == ERROR_TIMEOUT) ? thrd_timedout : thrd_error; } int cnd_wait(cnd_t *cond, mtx_t *mtx) { assert(cond != NULL); assert(mtx != NULL); SleepConditionVariableCS((PCONDITION_VARIABLE) cond, (PCRITICAL_SECTION) mtx, INFINITE); return thrd_success; } void mtx_destroy(mtx_t *mtx) { assert(mtx); DeleteCriticalSection((PCRITICAL_SECTION) mtx); } int mtx_init(mtx_t *mtx, int type) { assert(mtx != NULL); if (type != mtx_plain && type != mtx_timed && type != (mtx_plain | mtx_recursive) && type != (mtx_timed | mtx_recursive)) return thrd_error; InitializeCriticalSection((PCRITICAL_SECTION) mtx); return thrd_success; } int mtx_lock(mtx_t *mtx) { assert(mtx != NULL); EnterCriticalSection((PCRITICAL_SECTION) mtx); return thrd_success; } int mtx_timedlock(mtx_t *mtx, const struct timespec *ts) { assert(mtx != NULL); assert(ts != NULL); while (mtx_trylock(mtx) != thrd_success) { if (impl_abs2relmsec(ts) == 0) return thrd_timedout; /* busy loop! */ thrd_yield(); } return thrd_success; } int mtx_trylock(mtx_t *mtx) { assert(mtx != NULL); return TryEnterCriticalSection((PCRITICAL_SECTION) mtx) ? thrd_success : thrd_busy; } int mtx_unlock(mtx_t *mtx) { assert(mtx != NULL); LeaveCriticalSection((PCRITICAL_SECTION) mtx); return thrd_success; } int thrd_create_with_stack(thrd_t *thr, thrd_start_t func, void *arg, ptrdiff_t const stack_size) { impl_thrd_param_t *pack; uintptr_t handle; assert(thr != NULL); assert(stack_size >= 0 && stack_size < 0x100000000); pack = (impl_thrd_param_t *) kit_alloc_dispatch( NULL, KIT_ALLOCATE, (sizeof(impl_thrd_param_t)), 0, NULL); if (!pack) return thrd_nomem; pack->func = func; pack->arg = arg; handle = _beginthreadex(NULL, (unsigned) stack_size, impl_thrd_routine, pack, CREATE_SUSPENDED, NULL); if (handle == 0) { kit_alloc_dispatch(NULL, KIT_DEALLOCATE, 0, 0, pack); if (errno == EAGAIN || errno == EACCES) return thrd_nomem; return thrd_error; } thr->handle = (void *) handle; pack->thrd = *thr; ResumeThread((HANDLE) handle); return thrd_success; } int thrd_create(thrd_t *thr, thrd_start_t func, void *arg) { return thrd_create_with_stack(thr, func, arg, 0); } thrd_t thrd_current(void) { /* GetCurrentThread() returns a pseudo-handle, which we need * to pass to DuplicateHandle(). Only the resulting handle can be * used from other threads. * * Note that neither handle can be compared to the one by * thread_create. Only the thread IDs - as returned by GetThreadId() * and GetCurrentThreadId() can be compared directly. * * Other potential solutions would be: * - define thrd_t as a thread Ids, but this would mean we'd need to * OpenThread for many operations * - use malloc'ed memory for thrd_t. This would imply using TLS for * current thread. * * Neither is particularly nice. * * Life would be much easier if C11 threads had different * abstractions for threads and thread IDs, just like C++11 threads * does... */ struct thrd_state *state = &impl_current_thread; if (state->thrd.handle == NULL) { if (!DuplicateHandle(GetCurrentProcess(), GetCurrentThread(), GetCurrentProcess(), &(state->thrd.handle), 0, FALSE, DUPLICATE_SAME_ACCESS)) { abort(); } state->handle_need_close = true; } return state->thrd; } int thrd_detach(thrd_t thr) { CloseHandle(thr.handle); return thrd_success; } int thrd_equal(thrd_t thr0, thrd_t thr1) { return GetThreadId(thr0.handle) == GetThreadId(thr1.handle); } _Noreturn void thrd_exit(int res) { _endthreadex((unsigned) res); } int thrd_join(thrd_t thr, int *res) { DWORD w, code; if (thr.handle == NULL) { return thrd_error; } w = WaitForSingleObject(thr.handle, INFINITE); if (w != WAIT_OBJECT_0) return thrd_error; if (res) { if (!GetExitCodeThread(thr.handle, &code)) { CloseHandle(thr.handle); return thrd_error; } *res = (int) code; } CloseHandle(thr.handle); return thrd_success; } int thrd_sleep(const struct timespec *time_point, struct timespec *remaining) { (void) remaining; assert(time_point); assert(!remaining); /* not implemented */ Sleep((DWORD) impl_timespec2msec(time_point)); return 0; } void thrd_yield(void) { SwitchToThread(); } # endif #endif /********************************************************************* * * * File: source/kit/atomic.win32.c * * * *********************************************************************/ #ifdef _MSC_VER static_assert(sizeof(char) == 1, "Wrong char size"); static_assert(sizeof(short) == 2, "Wrong short size"); static_assert(sizeof(int) == 4, "Wrong int size"); # include void kit_atomic_store_explicit_8(uint8_t volatile *var, uint8_t value, int memory_order) { char volatile *dst = (char volatile *) var; char src = (char) value; switch (memory_order) { case memory_order_relaxed: *dst = src; break; default: _InterlockedExchange8(dst, src); } } void kit_atomic_store_explicit_16(uint16_t volatile *var, uint16_t value, int memory_order) { short volatile *dst = (short volatile *) var; short src = (short) value; switch (memory_order) { case memory_order_relaxed: *dst = src; break; default: _InterlockedExchange16(dst, src); } } void kit_atomic_store_explicit_32(uint32_t volatile *var, uint32_t value, int memory_order) { int volatile *dst = (int volatile *) var; int src = (int) value; switch (memory_order) { case memory_order_relaxed: *dst = src; break; default: _InterlockedExchange(dst, src); } } void kit_atomic_store_explicit_64(uint64_t volatile *var, uint64_t value, int memory_order) { __int64 volatile *dst = (__int64 volatile *) var; __int64 src = (__int64) value; switch (memory_order) { case memory_order_relaxed: *dst = src; break; default: # ifdef _WIN64 _InterlockedExchange64(dst, src); # else _InterlockedExchange((int volatile *) dst, (int) src); # endif } } uint8_t kit_atomic_load_explicit_8(volatile uint8_t *var, int memory_order) { char volatile *dst = (char volatile *) var; if (memory_order == memory_order_relaxed) return (uint8_t) *dst; return (uint8_t) _InterlockedOr8(dst, 0); } uint16_t kit_atomic_load_explicit_16(uint16_t volatile *var, int memory_order) { short volatile *dst = (short volatile *) var; if (memory_order == memory_order_relaxed) return (uint16_t) *dst; return (uint16_t) _InterlockedOr16(dst, 0); } uint32_t kit_atomic_load_explicit_32(uint32_t volatile *var, int memory_order) { int volatile *dst = (int volatile *) var; if (memory_order == memory_order_relaxed) return (uint32_t) *dst; return (uint32_t) _InterlockedOr(dst, 0); } uint64_t kit_atomic_load_explicit_64(uint64_t volatile *var, int memory_order) { __int64 volatile *dst = (__int64 volatile *) var; if (memory_order == memory_order_relaxed) return (uint64_t) *dst; # ifdef _WIN64 return (uint64_t) _InterlockedOr64(dst, 0); # else return (uint64_t) _InterlockedOr((int volatile *) dst, 0); # endif } uint8_t kit_atomic_exchange_explicit_8(volatile uint8_t *var, uint8_t value, int memory_order) { char volatile *dst = (char volatile *) var; char src = (char) value; return (uint8_t) _InterlockedExchange8(dst, src); } uint16_t kit_atomic_exchange_explicit_16(uint16_t volatile *var, uint16_t value, int memory_order) { short volatile *dst = (short volatile *) var; short src = (short) value; return (uint16_t) _InterlockedExchange16(dst, src); } uint32_t kit_atomic_exchange_explicit_32(uint32_t volatile *var, uint32_t value, int memory_order) { int volatile *dst = (int volatile *) var; int src = (int) value; return (uint32_t) _InterlockedExchange(dst, src); } uint64_t kit_atomic_exchange_explicit_64(uint64_t volatile *var, uint64_t value, int memory_order) { __int64 volatile *dst = (__int64 volatile *) var; __int64 src = (__int64) value; # ifdef _WIN64 return (uint64_t) _InterlockedExchange64(dst, src); # else return (uint64_t) _InterlockedExchange((int volatile *) dst, (int) src); # endif } uint8_t kit_atomic_fetch_add_explicit_8(volatile uint8_t *var, uint8_t value, int memory_order) { char volatile *dst = (char volatile *) var; char src = (char) value; return (uint8_t) _InterlockedExchangeAdd8(dst, src); } uint16_t kit_atomic_fetch_add_explicit_16(uint16_t volatile *var, uint16_t value, int memory_order) { short volatile *dst = (short volatile *) var; short src = (short) value; return (uint16_t) _InterlockedExchangeAdd16(dst, src); } uint32_t kit_atomic_fetch_add_explicit_32(uint32_t volatile *var, uint32_t value, int memory_order) { int volatile *dst = (int volatile *) var; int src = (int) value; return (uint32_t) _InterlockedExchangeAdd(dst, src); } uint64_t kit_atomic_fetch_add_explicit_64(uint64_t volatile *var, uint64_t value, int memory_order) { __int64 volatile *dst = (__int64 volatile *) var; __int64 src = (__int64) value; # ifdef _WIN64 return (uint64_t) _InterlockedExchangeAdd64(dst, src); # else return (uint64_t) _InterlockedExchangeAdd((int volatile *) dst, (int) src); # endif } #endif /********************************************************************* * * * File: source/kit/mutex.c * * * *********************************************************************/ /********************************************************************* * * * File: source/kit/condition_variable.c * * * *********************************************************************/ /********************************************************************* * * * File: source/kit/dynamic_array.c * * * *********************************************************************/ #include #include void kit_da_init(kit_da_void_t *array, ptrdiff_t element_size, ptrdiff_t size, kit_allocator_t *alloc) { assert(array != NULL); assert(element_size > 0); assert(size >= 0); memset(array, 0, sizeof(kit_da_void_t)); if (size > 0) array->values = kit_alloc_dispatch(alloc, KIT_ALLOCATE, element_size * size, 0, NULL); if (array->values != NULL) { array->capacity = size; array->size = size; } array->alloc = alloc; } static ptrdiff_t eval_capacity(ptrdiff_t current_cap, ptrdiff_t required_cap) { if (current_cap == 0) return required_cap; ptrdiff_t cap = current_cap; while (cap < required_cap) cap *= 2; return cap; } void kit_da_resize(kit_da_void_t *array, ptrdiff_t element_size, ptrdiff_t size) { assert(array != NULL); assert(element_size > 0); assert(size >= 0); if (size <= array->capacity) { array->size = size; } else { ptrdiff_t capacity = eval_capacity(array->capacity, size); void *bytes = kit_alloc_dispatch( array->alloc, KIT_ALLOCATE, element_size * capacity, 0, NULL); if (bytes != NULL) { if (array->size > 0) memcpy(bytes, array->values, element_size * array->size); if (array->values != NULL) kit_alloc_dispatch(array->alloc, KIT_DEALLOCATE, 0, 0, array->values); array->capacity = capacity; array->size = size; array->values = bytes; } } } void kit_da_resize_exact(kit_da_void_t *array, ptrdiff_t element_size, ptrdiff_t capacity) { assert(array != NULL); assert(element_size > 0); assert(capacity >= 0); void *bytes = capacity <= 0 ? NULL : kit_alloc_dispatch(array->alloc, KIT_ALLOCATE, element_size * capacity, 0, NULL); if (bytes != NULL || capacity == 0) { if (array->size > 0 && capacity > 0) memcpy(bytes, array->values, element_size * array->size); if (array->values != NULL) kit_alloc_dispatch(array->alloc, KIT_DEALLOCATE, 0, 0, array->values); array->capacity = capacity; array->size = capacity; array->values = bytes; } } /********************************************************************* * * * File: source/kit/input_stream.c * * * *********************************************************************/ #include enum { KIT_INPUT_STREAM_STR, KIT_INPUT_STREAM_FILE }; typedef struct { ptrdiff_t type; kit_allocator_t *alloc; } kit_is_state_basic_t; typedef struct { ptrdiff_t type; kit_allocator_t *alloc; kit_str_t string; } kit_is_state_str_t; typedef struct { ptrdiff_t type; kit_allocator_t *alloc; FILE *file; } kit_is_state_file_t; static int kit_is_check_type_(void *state, ptrdiff_t type) { kit_is_state_basic_t *basic = (kit_is_state_basic_t *) state; return basic != NULL && basic->type == type; } static ptrdiff_t kit_read_str_(void *state, kit_str_t destination) { if (!kit_is_check_type_(state, KIT_INPUT_STREAM_STR)) return 0; kit_is_state_str_t *str = (kit_is_state_str_t *) state; ptrdiff_t size = destination.size < str->string.size ? destination.size : str->string.size; memcpy(destination.values, str->string.values, size); str->string.values += size; str->string.size -= size; return size; } static ptrdiff_t kit_read_file_(void *state, kit_str_t destination) { if (!kit_is_check_type_(state, KIT_INPUT_STREAM_FILE)) return 0; kit_is_state_file_t *f = (kit_is_state_file_t *) state; if (f->file == NULL || feof(f->file)) return 0; ptrdiff_t size = (ptrdiff_t) fread(destination.values, 1, destination.size, f->file); if (size <= 0) return 0; return size; } kit_is_handle_t kit_is_wrap_string(kit_str_t string, kit_allocator_t *alloc) { kit_is_handle_t in; memset(&in, 0, sizeof in); kit_is_state_str_t *state = (kit_is_state_str_t *) kit_alloc_dispatch(alloc, KIT_ALLOCATE, sizeof(kit_is_state_str_t), 0, NULL); if (state != NULL) { memset(state, 0, sizeof *state); state->type = KIT_INPUT_STREAM_STR; state->string = string; state->alloc = alloc; in.state = state; in.read = kit_read_str_; } return in; } kit_is_handle_t kit_is_wrap_file(FILE *f, kit_allocator_t *alloc) { kit_is_handle_t in; memset(&in, 0, sizeof in); kit_is_state_file_t *state = (kit_is_state_file_t *) kit_alloc_dispatch(alloc, KIT_ALLOCATE, sizeof(kit_is_state_file_t), 0, NULL); if (state != NULL) { memset(state, 0, sizeof *state); state->type = KIT_INPUT_STREAM_FILE; state->file = f; state->alloc = alloc; in.state = state; in.read = kit_read_file_; } return in; } void kit_is_destroy(kit_is_handle_t in) { kit_is_state_basic_t *basic = (kit_is_state_basic_t *) in.state; if (basic != NULL) kit_alloc_dispatch(basic->alloc, KIT_DEALLOCATE, 0, 0, in.state); } /********************************************************************* * * * File: source/kit/input_buffer.c * * * *********************************************************************/ #include #include typedef struct { ptrdiff_t ref_count; kit_is_handle_t upstream; kit_allocator_t *alloc; kit_string_t data; } internal_buffer_t; static internal_buffer_t *kit_buf_init_(kit_is_handle_t upstream, kit_allocator_t *alloc) { internal_buffer_t *buf = kit_alloc_dispatch(alloc, KIT_ALLOCATE, sizeof *buf, 0, NULL); if (buf != NULL) { memset(buf, 0, sizeof *buf); buf->ref_count = 1; buf->upstream = upstream; buf->alloc = alloc; DA_INIT(buf->data, 0, alloc); } return buf; } static kit_allocator_t *kit_buf_alloc_(void *p) { assert(p != NULL); return ((internal_buffer_t *) p)->alloc; } static void kit_buf_acquire_(void *p) { assert(p != NULL); ((internal_buffer_t *) p)->ref_count++; } static void kit_buf_release_(void *p) { assert(p != NULL); internal_buffer_t *buf = (internal_buffer_t *) p; if (--buf->ref_count == 0) { DA_DESTROY(buf->data); kit_alloc_dispatch(buf->alloc, KIT_DEALLOCATE, 0, 0, buf); } } static void kit_buf_adjust_(void *p, ptrdiff_t size) { assert(p != NULL); assert(size >= 0); internal_buffer_t *buf = (internal_buffer_t *) p; ptrdiff_t offset = buf->data.size; if (offset < size) { DA_RESIZE(buf->data, size); kit_str_t destination = { .size = size - offset, .values = buf->data.values + offset }; ptrdiff_t n = KIT_IS_READ(buf->upstream, destination); DA_RESIZE(buf->data, offset + n); } } static ptrdiff_t kit_buf_read_(void *p, ptrdiff_t offset, kit_str_t destination) { internal_buffer_t *buf = (internal_buffer_t *) p; ptrdiff_t n = destination.size < buf->data.size - offset ? destination.size : buf->data.size - offset; memcpy(destination.values, buf->data.values + offset, n); return n; } kit_ib_handle_t kit_ib_wrap(kit_is_handle_t upstream, kit_allocator_t *alloc) { kit_ib_handle_t buf; memset(&buf, 0, sizeof buf); buf.status = KIT_OK; DA_INIT(buf.data, 0, alloc); buf.internal = kit_buf_init_(upstream, alloc); if (buf.internal == NULL) buf.status = KIT_ERROR_BAD_ALLOC; return buf; } kit_ib_handle_t kit_ib_read(kit_ib_handle_t buf, ptrdiff_t size) { kit_ib_handle_t next; memset(&next, 0, sizeof next); if (buf.status != KIT_OK) { next.status = buf.status; return next; } kit_buf_acquire_(buf.internal); kit_buf_adjust_(buf.internal, buf.offset + size); DA_INIT(next.data, size, kit_buf_alloc_(buf.internal)); if (next.data.size != size) next.status = KIT_ERROR_BAD_ALLOC; kit_str_t destination = { .size = next.data.size, .values = next.data.values }; ptrdiff_t n = kit_buf_read_(buf.internal, buf.offset, destination); next.offset = buf.offset + n; next.internal = buf.internal; DA_RESIZE(next.data, n); if (next.data.size != n) next.status = KIT_ERROR_BAD_ALLOC; return next; } kit_ib_handle_t kit_ib_read_while( kit_ib_handle_t buf, kit_ib_read_condition_fn condition) { kit_ib_handle_t next; memset(&next, 0, sizeof next); if (buf.status != KIT_OK) { next.status = buf.status; return next; } kit_buf_acquire_(buf.internal); DA_INIT(next.data, 0, kit_buf_alloc_(buf.internal)); ptrdiff_t size = 0; for (;; ++size) { kit_buf_adjust_(buf.internal, buf.offset + size + 1); DA_RESIZE(next.data, size + 1); if (next.data.size != size + 1) next.status = KIT_ERROR_BAD_ALLOC; kit_str_t destination = { .size = 1, .values = next.data.values + size }; ptrdiff_t n = kit_buf_read_(buf.internal, buf.offset + size, destination); kit_str_t data = { .size = size + 1, .values = next.data.values }; if (n != 1 || condition == NULL || condition(data) == 0) break; } next.offset = buf.offset + size; next.internal = buf.internal; DA_RESIZE(next.data, size); if (next.data.size != size) next.status = KIT_ERROR_BAD_ALLOC; return next; } void kit_ib_destroy(kit_ib_handle_t buf) { kit_buf_release_(buf.internal); DA_DESTROY(buf.data); } /********************************************************************* * * * File: source/kit/file.c * * * *********************************************************************/ #include #include #include enum { PATH_BUF_SIZE = 4096 }; #if defined(_WIN32) && !defined(__CYGWIN__) # include # ifndef WIN32_LEAN_AND_MEAN # define WIN32_LEAN_AND_MEAN 1 # endif # include # include #else # include # include # include #endif #ifdef __APPLE__ # define st_mtim st_mtimespec #endif static int is_delim(char c) { return c == '/' || c == '\\'; } static kit_string_t kit_get_env_(char *name, kit_allocator_t *alloc) { char *val = getenv(name); ptrdiff_t size = val != NULL ? (ptrdiff_t) strlen(val) : 0; string_t result; DA_INIT(result, size, alloc); assert(result.size == size); if (result.size == size && size > 0) memcpy(result.values, val, result.size); else DA_RESIZE(result, 0); return result; } kit_string_t kit_path_norm(kit_str_t path, kit_allocator_t *alloc) { str_t parent = SZ(".."); ptrdiff_t i, i1, j; string_t norm; DA_INIT(norm, path.size, alloc); assert(norm.size == path.size); if (norm.size != path.size) return norm; memcpy(norm.values, path.values, path.size); for (i1 = 0, i = 0; i < path.size; i++) { if (!is_delim(path.values[i])) continue; str_t s = { .size = i - i1 - 1, .values = path.values + i1 + 1 }; if (AR_EQUAL(s, parent)) { int have_parent = 0; ptrdiff_t i0 = 0; for (j = 0; j < i1; j++) { if (norm.values[j] != '\0') have_parent = 1; if (is_delim(norm.values[j])) i0 = j; } if (have_parent) { memset(norm.values + i0, '\0', i - i0); if (!is_delim(path.values[i0])) norm.values[i] = '\0'; } } i1 = i; } ptrdiff_t size = 0; for (i = 0; i < norm.size; i++) { if (norm.values[i] != '\0') { if (is_delim(norm.values[i])) norm.values[size] = KIT_PATH_DELIM_C; else norm.values[size] = norm.values[i]; size++; } } norm.size = size; return norm; } kit_string_t kit_path_join(kit_str_t left, kit_str_t right, kit_allocator_t *alloc) { ptrdiff_t left_size = left.size; ptrdiff_t right_size = right.size; char *right_values = right.values; if (left_size > 0 && is_delim(left.values[left_size - 1])) left_size--; if (right_size > 0 && is_delim(right.values[0])) { right_size--; right_values++; } kit_string_t joined; DA_INIT(joined, left_size + right_size + 1, alloc); assert(joined.size == left_size + right_size + 1); if (joined.size != left_size + right_size + 1) return joined; memcpy(joined.values, left.values, left_size); joined.values[left_size] = KIT_PATH_DELIM_C; memcpy(joined.values + left_size + 1, right_values, right_size); return joined; } kit_string_t kit_path_user(kit_allocator_t *alloc) { kit_string_t user = kit_get_env_(KIT_ENV_HOME, alloc); if (user.size == 0) { DA_RESIZE(user, 1); if (user.size == 1) user.values[0] = '.'; } return user; } kit_string_t kit_path_cache(kit_allocator_t *alloc) { kit_string_t cache, user; #if defined(_WIN32) && !defined(__CYGWIN__) cache = kit_get_env_("LOCALAPPDATA", alloc); if (cache.size != 0) return cache; DA_DESTROY(cache); #endif cache = kit_get_env_("XDG_CACHE_HOME", alloc); if (cache.size != 0) return cache; DA_DESTROY(cache); user = kit_path_user(alloc); cache = #ifdef __APPLE__ kit_path_join(WRAP_STR(user), SZ("Library" PATH_DELIM "Caches"), alloc); #else kit_path_join(WRAP_STR(user), SZ(".cache"), alloc); #endif DA_DESTROY(user); return cache; } kit_str_t kit_path_index(kit_str_t path, ptrdiff_t index) { str_t s = { .size = 0, .values = NULL }; ptrdiff_t i0 = 0; ptrdiff_t i = 0; ptrdiff_t n = 0; for (; i < path.size; i++) { if (!is_delim(path.values[i])) continue; if (i0 < i) { if (n++ == index) { s.values = path.values + i0; s.size = i - i0; return s; } } i0 = i + 1; } if (n == index) { s.values = path.values + i0; s.size = i - i0; } return s; } kit_str_t kit_path_take(kit_str_t path, ptrdiff_t count) { str_t s = { .size = 0, .values = path.values }; ptrdiff_t i0 = 0; ptrdiff_t i = 0; ptrdiff_t n = 0; for (; i < path.size; i++) { if (!is_delim(path.values[i])) continue; if (i0 < i) { if (n++ == count) { s.size = i; return s; } } i0 = i + 1; } if (n == count) s.size = i; return s; } #if defined(_WIN32) && !defined(__CYGWIN__) static void win32_prepare_path_(WCHAR *buf, kit_str_t path) { assert(path.size == 0 || path.values != NULL); assert(path.size + 5 < PATH_BUF_SIZE); memset(buf, 0, PATH_BUF_SIZE); buf[0] = L'\\'; buf[1] = L'\\'; buf[2] = L'?'; buf[3] = L'\\'; if (path.size > 0 && path.size + 5 < PATH_BUF_SIZE) for (ptrdiff_t i = 0; i < path.size; i++) { if (path.values[i] == '/') buf[4 + i] = L'\\'; else buf[4 + i] = path.values[i]; } } # define PREPARE_PATH_BUF_ \ WCHAR buf[PATH_BUF_SIZE]; \ win32_prepare_path_(buf, path) #else static void unix_prepare_path_(char *buf, kit_str_t path) { assert(path.size == 0 || path.values != NULL); assert(path.size + 1 < PATH_BUF_SIZE); memset(buf, 0, PATH_BUF_SIZE); if (path.size > 0 && path.size + 1 < PATH_BUF_SIZE) memcpy(buf, path.values, path.size); } # define PREPARE_PATH_BUF_ \ char buf[PATH_BUF_SIZE]; \ unix_prepare_path_(buf, path) #endif kit_status_t kit_file_create_folder(kit_str_t path) { PREPARE_PATH_BUF_; #if defined(_WIN32) && !defined(__CYGWIN__) return CreateDirectoryW(buf, NULL) ? KIT_OK : KIT_ERROR_MKDIR_FAILED; #else return mkdir(buf, 0755) == 0 ? KIT_OK : KIT_ERROR_MKDIR_FAILED; #endif } kit_status_t kit_file_create_folder_recursive(kit_str_t path) { ptrdiff_t i; for (i = 0;; i++) { str_t part = kit_path_take(path, i); int type = kit_path_type(part); if (type == KIT_PATH_FILE) return KIT_ERROR_FILE_ALREADY_EXISTS; if (type == KIT_PATH_NONE) { kit_status_t s = kit_file_create_folder(part); if (s != KIT_OK) return s; } if (part.size == path.size) break; } return KIT_OK; } kit_status_t kit_file_remove(kit_str_t path) { PREPARE_PATH_BUF_; #if defined(_WIN32) && !defined(__CYGWIN__) return DeleteFileW(buf) ? KIT_OK : KIT_ERROR_UNLINK_FAILED; #else return unlink(buf) == 0 ? KIT_OK : KIT_ERROR_UNLINK_FAILED; #endif } kit_status_t kit_file_remove_folder(kit_str_t path) { PREPARE_PATH_BUF_; #if defined(_WIN32) && !defined(__CYGWIN__) return RemoveDirectoryW(buf) ? KIT_OK : KIT_ERROR_RMDIR_FAILED; #else return rmdir(buf) == 0 ? KIT_OK : KIT_ERROR_RMDIR_FAILED; #endif } kit_status_t kit_file_remove_recursive(kit_str_t path, kit_allocator_t *alloc) { int type = kit_path_type(path); ptrdiff_t i; switch (type) { case KIT_PATH_FILE: return kit_file_remove(path); case KIT_PATH_FOLDER: { kit_path_list_t list = kit_file_enum_folder(path, alloc); if (list.status != KIT_OK) { kit_path_list_destroy(list); return list.status; } for (i = 0; i < list.files.size; i++) { str_t s = { .size = list.files.values[i].size, .values = list.files.values[i].values }; kit_file_remove_recursive(s, alloc); } kit_path_list_destroy(list); return kit_file_remove_folder(path); } default:; } return KIT_ERROR_FILE_DO_NOT_EXIST; } kit_path_type_t kit_path_type(kit_str_t path) { PREPARE_PATH_BUF_; #if defined(_WIN32) && !defined(__CYGWIN__) if (PathFileExistsW(buf)) { if ((GetFileAttributesW(buf) & FILE_ATTRIBUTE_DIRECTORY) != 0) return KIT_PATH_FOLDER; else return KIT_PATH_FILE; } #else struct stat info; if (stat(buf, &info) == 0) { if (S_ISREG(info.st_mode)) return KIT_PATH_FILE; if (S_ISDIR(info.st_mode)) return KIT_PATH_FOLDER; } #endif return KIT_PATH_NONE; } kit_file_info_t kit_file_info(kit_str_t path) { kit_file_info_t result; memset(&result, 0, sizeof result); PREPARE_PATH_BUF_; #if defined(_WIN32) && !defined(__CYGWIN__) HANDLE f = CreateFileW(buf, GENERIC_READ, FILE_SHARE_READ, NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL); if (f != INVALID_HANDLE_VALUE) { FILETIME ft; if (GetFileTime(f, NULL, NULL, &ft) != 0) { uint64_t nsec100 = (((uint64_t) ft.dwHighDateTime) << 32) | (uint64_t) ft.dwLowDateTime; result.time_modified_sec = (int64_t) (nsec100 / 10000000); result.time_modified_nsec = (int32_t) (100 * (nsec100 % 10000000)); } else { assert(0); } DWORD high; DWORD low = GetFileSize(f, &high); result.size = (int64_t) ((((uint64_t) high) << 32) | (uint64_t) low); result.status = KIT_OK; CloseHandle(f); return result; } #else struct stat info; if (stat(buf, &info) == 0 && S_ISREG(info.st_mode)) { result.size = (int64_t) info.st_size; # ifndef st_mtime /* No support for nanosecond timestamps. */ result.time_modified_sec = (int64_t) info.st_mtime; # else result.time_modified_sec = (int64_t) info.st_mtim.tv_sec; result.time_modified_nsec = (int32_t) info.st_mtim.tv_nsec; # endif result.status = KIT_OK; return result; } #endif result.status = KIT_ERROR_FILE_DO_NOT_EXIST; return result; } kit_path_list_t kit_file_enum_folder(kit_str_t path, kit_allocator_t *alloc) { PREPARE_PATH_BUF_; kit_path_list_t result = { .status = KIT_OK }; DA_INIT(result.files, 0, alloc); #if defined(_WIN32) && !defined(__CYGWIN__) if (path.size + 7 >= PATH_BUF_SIZE) { result.status = KIT_ERROR_PATH_TOO_LONG; return result; } buf[path.size + 4] = '\\'; buf[path.size + 5] = '*'; WIN32_FIND_DATAW data; HANDLE find = FindFirstFileW(buf, &data); if (find == INVALID_HANDLE_VALUE) return result; do { ptrdiff_t n = result.files.size; DA_RESIZE(result.files, n + 1); if (result.files.size != n + 1) { result.status = KIT_ERROR_BAD_ALLOC; break; } ptrdiff_t size = 0; while (size < MAX_PATH && data.cFileName[size] != L'\0') size++; DA_INIT(result.files.values[n], size, alloc); if (result.files.values[n].size != size) { DA_RESIZE(result.files, n); result.status = KIT_ERROR_BAD_ALLOC; break; } for (ptrdiff_t i = 0; i < size; i++) result.files.values[n].values[i] = data.cFileName[i]; } while (FindNextFileW(find, &data) != 0); FindClose(find); #else DIR *directory = opendir(buf); if (directory == NULL) return result; for (;;) { struct dirent *entry = readdir(directory); if (entry == NULL) break; if (entry->d_name[0] == '.') continue; ptrdiff_t n = result.files.size; DA_RESIZE(result.files, n + 1); if (result.files.size != n + 1) { result.status = KIT_ERROR_BAD_ALLOC; break; } ptrdiff_t size = (ptrdiff_t) strlen(entry->d_name); DA_INIT(result.files.values[n], size, alloc); if (result.files.values[n].size != size) { DA_RESIZE(result.files, n); result.status = KIT_ERROR_BAD_ALLOC; break; } if (size > 0) memcpy(result.files.values[n].values, entry->d_name, size); } closedir(directory); #endif return result; } void kit_path_list_destroy(kit_path_list_t list) { ptrdiff_t i; for (i = 0; i < list.files.size; i++) DA_DESTROY(list.files.values[i]); DA_DESTROY(list.files); } /********************************************************************* * * * File: source/kit/mersenne_twister_64.c * * * *********************************************************************/ #define MM 156 #define MATRIX_A 0xb5026f5aa96619e9ull #define UM 0xffffffff80000000ull #define LM 0x7fffffffull void kit_mt64_init_array(kit_mt64_state_t *state, ptrdiff_t size, uint64_t *seed) { ptrdiff_t i; for (i = 0; i < size && i < KIT_MT64_N; i++) state->mt[i] = seed[i]; for (state->index = size; state->index < KIT_MT64_N; state->index++) state->mt[state->index] = (6364136223846793005ull * (state->mt[state->index - 1] ^ (state->mt[state->index - 1] >> 62u)) + state->index); } void kit_mt64_init(kit_mt64_state_t *state, uint64_t seed) { kit_mt64_init_array(state, 1, &seed); } void kit_mt64_rotate(kit_mt64_state_t *state) { static uint64_t mag01[2] = { 0ull, MATRIX_A }; uint64_t x; int i; for (i = 0; i < KIT_MT64_N - MM; i++) { x = (state->mt[i] & UM) | (state->mt[i + 1] & LM); state->mt[i] = state->mt[i + MM] ^ (x >> 1u) ^ mag01[(int) (x & 1ull)]; } for (; i < KIT_MT64_N - 1; i++) { x = (state->mt[i] & UM) | (state->mt[i + 1] & LM); state->mt[i] = state->mt[i + (MM - KIT_MT64_N)] ^ (x >> 1u) ^ mag01[(int) (x & 1ull)]; } x = (state->mt[KIT_MT64_N - 1] & UM) | (state->mt[0] & LM); state->mt[KIT_MT64_N - 1] = state->mt[MM - 1] ^ (x >> 1u) ^ mag01[(int) (x & 1ull)]; state->index = 0; } uint64_t kit_mt64_generate(kit_mt64_state_t *state) { if (state->index >= KIT_MT64_N) kit_mt64_rotate(state); uint64_t x = state->mt[state->index++]; x ^= (x >> 29u) & 0x5555555555555555ull; x ^= (x << 17u) & 0x71d67fffeda60000ull; x ^= (x << 37u) & 0xfff7eee000000000ull; x ^= (x >> 43u); return x; } /********************************************************************* * * * File: source/kit/secure_random.c * * * *********************************************************************/ #include #include #if defined(_WIN32) && !defined(__CYGWIN__) # ifndef WIN32_LEAN_AND_MEAN # define WIN32_LEAN_AND_MEAN 1 # endif # include #else # include #endif static uint64_t get_available_memory(void) { #if defined(_WIN32) && !defined(__CYGWIN__) MEMORYSTATUSEX status; status.dwLength = sizeof(status); GlobalMemoryStatusEx(&status); return (uint64_t) status.ullTotalPhys; #else uint64_t pages = (uint64_t) sysconf(_SC_PHYS_PAGES); uint64_t page_size = (uint64_t) sysconf(_SC_PAGE_SIZE); return pages * page_size; #endif } #ifndef KIT_DISABLE_SYSTEM_THREADS static once_flag kit_secure_random_fallback_flag; static mtx_t kit_secure_random_fallback_mutex; static void secure_random_fallback_init(void) { mtx_init(&kit_secure_random_fallback_mutex, mtx_plain); } #endif static void secure_random_fallback(ptrdiff_t size, void *data) { #ifndef KIT_DISABLE_SYSTEM_THREADS call_once(&kit_secure_random_fallback_flag, secure_random_fallback_init); mtx_lock(&kit_secure_random_fallback_mutex); #endif /* Try to get some unpredictable system properties and use them to * seed the pseudo random number generator. */ static int8_t first_run = 1; static uint64_t n = 0; static uint64_t time_sec = 0; static uint64_t time_nsec = 0; struct timespec t; timespec_get(&t, TIME_UTC); kit_mt64_state_t state; if (first_run) { first_run = 0; uint64_t seed[] = { n, get_available_memory(), (uint64_t) t.tv_sec, (uint64_t) t.tv_nsec }; kit_mt64_init_array(&state, sizeof seed / sizeof *seed, seed); } else { uint64_t seed[] = { n, get_available_memory(), (uint64_t) t.tv_sec, (uint64_t) t.tv_nsec, (uint64_t) t.tv_sec - time_sec, (uint64_t) t.tv_nsec - time_nsec }; kit_mt64_init_array(&state, sizeof seed / sizeof *seed, seed); } kit_mt64_rotate(&state); n = kit_mt64_generate(&state); time_sec = (uint64_t) t.tv_sec; time_nsec = (uint64_t) t.tv_nsec; for (ptrdiff_t i = 0; i < size; i++) ((uint8_t *) data)[i] = (uint8_t) (kit_mt64_generate(&state) >> 56); #ifndef KIT_DISABLE_SYSTEM_THREADS mtx_unlock(&kit_secure_random_fallback_mutex); #endif } void kit_secure_random(ptrdiff_t size, void *data) { assert(size > 0); assert(data != NULL); if (size <= 0 || data == NULL) return; #if defined(_WIN32) && !defined(__CYGWIN__) secure_random_fallback(size, data); #else FILE *f = fopen("/dev/urandom", "rb"); assert(f != NULL); if (f == NULL) { secure_random_fallback(size, data); return; } size_t n = fread(data, 1, size, f); fclose(f); assert(n == size); if (n != size) secure_random_fallback(size, data); #endif } /********************************************************************* * * * File: source/kit/sha256.c * * * *********************************************************************/ #include #include #define ROTLEFT(a, b) (((a) << (b)) | ((a) >> (32 - (b)))) #define ROTRIGHT(a, b) (((a) >> (b)) | ((a) << (32 - (b)))) #define CH(x, y, z) (((x) & (y)) ^ (~(x) & (z))) #define MAJ(x, y, z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) #define EP0(x) (ROTRIGHT(x, 2) ^ ROTRIGHT(x, 13) ^ ROTRIGHT(x, 22)) #define EP1(x) (ROTRIGHT(x, 6) ^ ROTRIGHT(x, 11) ^ ROTRIGHT(x, 25)) #define SIG0(x) (ROTRIGHT(x, 7) ^ ROTRIGHT(x, 18) ^ ((x) >> 3)) #define SIG1(x) (ROTRIGHT(x, 17) ^ ROTRIGHT(x, 19) ^ ((x) >> 10)) static uint32_t kit_sha256_k[64] = { 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 }; static void kit_sha256_transform(uint32_t *state, uint8_t *data) { assert(state != NULL); assert(data != NULL); uint32_t a, b, c, d, e, f, g, h, i, j, t1, t2, m[64]; for (i = 0, j = 0; i < 16; ++i, j += 4) m[i] = ((uint32_t) data[j] << 24) | ((uint32_t) data[j + 1] << 16) | ((uint32_t) data[j + 2] << 8) | ((uint32_t) data[j + 3]); for (; i < 64; ++i) m[i] = SIG1(m[i - 2]) + m[i - 7] + SIG0(m[i - 15]) + m[i - 16]; a = state[0]; b = state[1]; c = state[2]; d = state[3]; e = state[4]; f = state[5]; g = state[6]; h = state[7]; for (i = 0; i < 64; ++i) { t1 = h + EP1(e) + CH(e, f, g) + kit_sha256_k[i] + m[i]; t2 = EP0(a) + MAJ(a, b, c); h = g; g = f; f = e; e = d + t1; d = c; c = b; b = a; a = t1 + t2; } state[0] += a; state[1] += b; state[2] += c; state[3] += d; state[4] += e; state[5] += f; state[6] += g; state[7] += h; } kit_sha256_hash_t kit_sha256(ptrdiff_t in_size, uint8_t *in_data) { assert(in_size >= 0); assert(in_data != NULL); uint32_t state[8] = { 0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19 }; uint8_t data[64]; ptrdiff_t i; ptrdiff_t datalen = 0; uint64_t bitlen = 0; if (in_data != NULL) for (i = 0; i < in_size; ++i) { data[datalen] = in_data[i]; datalen++; if (datalen != 64) continue; kit_sha256_transform(state, data); bitlen += 512; datalen = 0; } i = datalen; if (datalen < 56) { data[i++] = 0x80; while (i < 56) data[i++] = 0x00; } else { data[i++] = 0x80; while (i < 64) data[i++] = 0x00; kit_sha256_transform(state, data); memset(data, 0, 56); } bitlen += datalen * 8; data[63] = bitlen; data[62] = bitlen >> 8; data[61] = bitlen >> 16; data[60] = bitlen >> 24; data[59] = bitlen >> 32; data[58] = bitlen >> 40; data[57] = bitlen >> 48; data[56] = bitlen >> 56; kit_sha256_transform(state, data); kit_sha256_hash_t hash; memset(&hash, 0, sizeof hash); for (i = 0; i < 4; ++i) { hash.v[i] = (state[0] >> (24 - i * 8)) & 0xff; hash.v[i + 4] = (state[1] >> (24 - i * 8)) & 0xff; hash.v[i + 8] = (state[2] >> (24 - i * 8)) & 0xff; hash.v[i + 12] = (state[3] >> (24 - i * 8)) & 0xff; hash.v[i + 16] = (state[4] >> (24 - i * 8)) & 0xff; hash.v[i + 20] = (state[5] >> (24 - i * 8)) & 0xff; hash.v[i + 24] = (state[6] >> (24 - i * 8)) & 0xff; hash.v[i + 28] = (state[7] >> (24 - i * 8)) & 0xff; } return hash; } #endif #endif